京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在SQL中,查询每个月的员工入职总数并按照入职总数排序是一个非常基本的数据分析需求。这种查询可以帮助您了解每个月公司招聘的情况,以及了解到公司业务增长和下降的趋势。在本文中,我们将介绍如何使用SQL查询每个月的员工入职总数,并按入职总数排序。
首先,我们需要有一个包含员工信息的数据表。假设我们的数据表名为employees,其中包含以下列:
employee_id:员工唯一标识符first_name:员工名字last_name:员工姓氏hire_date:员工入职日期如果您还没有这样的数据表,请创建它并填充一些示例数据。以下是一个示例查询,用于创建和填充此数据表:
CREATE TABLE employees (
employee_id INT PRIMARY KEY,
first_name VARCHAR(50) NOT NULL,
last_name VARCHAR(50) NOT NULL,
hire_date DATE NOT NULL
);
INSERT INTO employees (employee_id, first_name, last_name, hire_date)
VALUES
(1, 'Alice', 'Smith', '2022-01-01'),
(2, 'Bob', 'Johnson', '2022-01-02'),
(3, 'Charlie', 'Brown', '2022-02-01'),
(4, 'David', 'Lee', '2022-03-01'),
(5, 'Emily', 'Wang', '2022-03-15'),
(6, 'Frank', 'Chen', '2022-04-01'),
(7, 'Grace', 'Huang', '2022-05-01'),
(8, 'Henry', 'Zhang', '2022-05-15'),
(9, 'Isabella', 'Liu', '2022-06-01'),
(10, 'Jack', 'Zhao', '2022-06-15');
现在我们已经有了一个包含示例数据的数据表,我们可以开始查询每个月的员工入职总数并按入职总数排序。
首先,我们需要从employees表中选择hire_date列和COUNT(*)函数。使用GROUP BY子句将结果分组为每个月:
SELECT DATE_FORMAT(hire_date, '%Y-%m') AS month,
COUNT(*) AS count
FROM employees
GROUP BY DATE_FORMAT(hire_date, '%Y-%m');
此查询将返回以下结果:
+---------+-------+
| month | count |
+---------+-------+
| 2022-01 | 2 |
| 2022-02 | 1 |
| 2022-03 | 2 |
| 2022-04 | 1 |
| 2022-05 | 2 |
| 2022-06 | 2 |
+---------+-------+
这里我们使用了MySQL的DATE_FORMAT函数来将日期格式化为"YYYY-MM"格式的字符串。在查询中,我们将该函数用于hire_date列,并将其重命名为month,以便更好地描述结果。
现在,我们已经获得了每个月的员工入职总数,但这还不够。为了回答原始问题,我们需要按照入职总数对结果进行排序。为此,我们可以使用ORDER BY子句:
SELECT DATE_FORMAT(hire_date, '%Y-%m') AS month,
COUNT(*) AS count
FROM employees
GROUP BY DATE_FORMAT(hire_date, '%Y-%m')
ORDER BY count DESC;
在上面的查询中,我们将结果按count列(即每个月的员工入职总数)降序排序,以便最高的入职总数排在最前面。执行此查询将返回以下结果:
+---------+-------+
| month | count |
+---------+-------+
| 2022-01 | 2 |
| 2022-03 | 2 |
| 2022-05 | 2 |
| 2022-06 | 2 | | 2022-02 | 1 | | 2022-04 | 1 | +---------+-------+
现在,我们已经成功查询了每个月的员工入职总数,并按入职总数排序。这些结果可以为公司提供有关员工招聘情况的有用信息,以便更好地进行人力资源规划和业务决策。
除了上面提到的MySQL函数`DATE_FORMAT`之外,大多数DBMS(如Oracle、SQL Server等)都提供了类似的功能来对日期进行格式化。因此,您可以根据自己使用的数据库系统,使用适当的函数。
总之,在SQL中,查询每个月的员工入职总数并按入职总数排序是一个基础的数据分析需求。通过使用GROUP BY子句和COUNT函数,我们可以轻松地获得每个月的员工入职总数。使用ORDER BY子句,我们可以根据入职总数排序结果,以使最高入职总数的月份排在最前面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23