
Pandas是Python中最具有代表性的数据分析库之一,它提供了强大的工具来处理和分析数据。在许多情况下,我们需要对时间序列数据进行操作,其中包括读取每月的第一天的数据。在本篇文章中,我将详细介绍如何使用Pandas从数据源中读取每月的第一天的数据。
在开始之前,我们需要准备一些示例数据。这里我们假设我们有一个CSV文件,其中包含了每个月的销售记录。CSV文件内容如下:
Date,Sales
2022-01-01,1000
2022-01-02,1500
2022-01-03,2000
2022-02-01,3000
2022-02-02,3500
2022-02-03,4000
2022-03-01,5000
2022-03-02,5500
2022-03-03,6000
首先,我们需要使用Pandas的read_csv函数读取CSV文件中的数据,并将日期列解析为Datetime类型:
import pandas as pd
df = pd.read_csv('sales.csv', parse_dates=['Date'])
这将返回一个DataFrame对象,其中包含两列:日期(Date)和销售额(Sales)。
接着,我们需要筛选出每个月的第一天的数据。Pandas提供了多种方法来实现这个目的。例如,我们可以使用resample函数按月份对数据进行分组,并选择每月的第一行数据:
df_monthly = df.resample('M', on='Date').first()
这将返回一个新的DataFrame对象,其中包含每个月的第一天的数据。下面是示例代码和结果:
print(df_monthly)
输出:
Sales
Date
2022-01-01 1000
2022-02-01 3000
2022-03-01 5000
还有一种更简单的方法是使用groupby函数和to_period函数:
df_monthly = df.groupby(pd.PeriodIndex(df['Date'], freq='M')).first()
这将返回与前面相同的DataFrame对象。
在本文中,我们介绍了如何使用Pandas从数据源中读取每月的第一天的数据。我们首先准备了一些示例数据,然后使用Pandas的read_csv函数读取了数据。接着,我们使用resample函数或groupby函数加上to_period函数筛选出每个月的第一天的数据。最终,我们得到了一个新的DataFrame对象,其中包含每个月的第一天的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14