京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 NumPy 中,可以使用 np.squeeze() 函数来删除值为 1 的维度。本文将详细介绍 np.squeeze() 函数的用法和示例。
np.squeeze() 函数?np.squeeze() 函数是 NumPy 库中的一个函数,用于从数组的形状中删除单维条目。如果将一个数组作为参数传递给 np.squeeze(),则该函数将返回一个新数组,其中所有维度为 1 的轴都被删除。此外,如果您希望只删除特定的维度,请在 np.squeeze() 函数的第二个参数中指定要删除的维度。
np.squeeze() 函数的语法np.squeeze() 函数的语法如下所示:
numpy.squeeze(arr, axis=None)
其中:
arr:需要压缩的数组。axis:默认为 None,表示删除所有维度为 1 的轴,也可以指定要删除的特定轴。np.squeeze() 函数的示例现在,让我们通过一些示例来了解 np.squeeze() 函数的使用。
假设有一个形状为 (1, 2, 1, 3) 的数组。使用 np.squeeze() 函数可以从数组中删除维度为 1 的轴,并返回形状为 (2, 3) 的新数组。
import numpy as np
a = np.ones((1, 2, 1, 3))
b = np.squeeze(a)
print("Shape of a:", a.shape)
print("Shape of b:", b.shape)
输出:
Shape of a: (1, 2, 1, 3)
Shape of b: (2, 3)
在这个例子中,我们将仅删除第二维和第四维。
import numpy as np
a = np.ones((1, 2, 3, 1, 4))
b = np.squeeze(a, axis=(1, 3))
print("Shape of a:", a.shape)
print("Shape of b:", b.shape)
输出:
Shape of a: (1, 2, 3, 1, 4)
Shape of b: (1, 3, 4)
np.squeeze() 函数可以方便地删除数组中单维条目。您可以使用它来删除特定轴上的值为 1 的维度,也可以使用它来删除所有维度为 1 的轴。希望本文能够对您理解 np.squeeze() 函数有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29