
在MySQL中,事务隔离级别和锁之间存在密切的关系。MySQL支持四种不同的事务隔离级别,分别是:未提交读(Read uncommitted)、提交读(Read committed)、可重复读(Repeatable read)和串行化(Serializable)。每种隔离级别都有不同的锁机制来确保事务的一致性和隔离性。
未提交读
在未提交读隔离级别下,一个事务可以读取另一个事务尚未提交的数据。这意味着,在该级别下,没有任何锁定机制来防止并发访问数据。因此,如果多个事务同时访问同一组数据,则可能会出现脏读(Dirty read)问题,即一个事务读取到了另一个事务还未提交的数据。
提交读
在提交读隔离级别下,一个事务只能读取另一个已经提交的事务所修改的数据。这个隔离级别提供了更高的一致性,但是可能会导致幻读(Phantom read)问题。幻读指的是,在一个事务内多次查询同一组数据时,由于其他事务插入了新数据,因此第二次查询将返回更新后的结果。
可重复读
在可重复读隔离级别下,一个事务在执行期间将看不到其他事务所做的任何更改,除非该事务自身已经提交。该隔离级别通过使用共享锁(Shared Lock)和排他锁(Exclusive Lock)来防止脏读和幻读问题。当一个事务获取了共享锁时,其他事务可以继续读取数据,但是不能修改该数据;当一个事务获取了排他锁时,其他事务无法读取或修改该数据。
串行化
在串行化隔离级别下,所有事务按照严格的先后顺序依次执行。这种隔离级别提供了最高的数据一致性,但是也会导致最低的并发性能。因为每个事务必须等待其他事务完成后才能开始执行。在该隔离级别下,MySQL会对所有读取和写入操作进行排他锁定,从而确保不会出现任何并发访问冲突。
总结
在MySQL中,事务隔离级别和锁机制密不可分。事务隔离级别定义了允许并发访问的程度,并指定了哪些锁应该用于保护数据。锁机制则确保在多个事务同时访问同一组数据时,数据的完整性和一致性得到保障。因此,在选择隔离级别时,需要权衡数据的一致性和性能需求,选择合适的级别和锁机制来确保系统的正确性和高效性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19