京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多变量 LSTM 模型来进行时间序列预测,并且给出一个例子来预测未来一周的气温。
首先,我们需要准备数据集。在本例中,我们将使用包含多个变量的天气数据。这些变量包括温度、湿度、风速、降雨量等。我们将选取最近一年的数据,将其前80%作为训练集,后20%作为测试集。
接下来,我们需要对数据进行归一化处理。由于不同变量之间的值域差异较大,我们需要将其进行缩放到一个相同的范围内。这里我们将使用 Scikit-Learn 库中的MinMaxScaler函数。
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)
接下来,我们需要将数据转换成适合 LSTM 模型的格式。在多变量情况下,我们需要将每个时刻的输入向量扩展到包含多个变量。这里我们将以过去 30 天的数据为输入,预测未来一周的气温。
import numpy as np def create_dataset(X, y, time_steps=1):
Xs, ys = [], [] for i in range(len(X) - time_steps):
v = X[i:i + time_steps]
Xs.append(v)
ys.append(y[i + time_steps]) return np.array(Xs), np.array(ys)
TIME_STEPS = 30 X_train, y_train = create_dataset(train_data, train_data[:, 0], TIME_STEPS)
X_test, y_test = create_dataset(test_data, test_data[:, 0], TIME_STEPS)
接下来,我们可以构建 LSTM 模型。在本例中,我们将使用两层 LSTM 和一个全连接层。模型的输入形状应该是(samples, time_steps, features)。
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM
model = Sequential([
LSTM(units=64, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True),
LSTM(units=32, return_sequences=False),
Dense(units=1)])
在训练模型之前,我们需要定义损失函数和优化器,并编译模型。
model.compile(loss='mean_squared_error', optimizer='adam')
现在,我们可以开始训练模型。在每个 epoch 后,我们将记录训练集和测试集上的损失值,并可视化它们的变化。
history = model.fit(
X_train, y_train,
epochs=50,
batch_size=16,
validation_split=0.1,
verbose=1,
shuffle=False) import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
在模型训练完成后,我们可以对测试集进行预测,并将预测结果与真实值进行比较。
y_pred = model.predict(X_test)
plt.plot(y_test, label='true')
plt.plot(y_pred, label='predicted')
plt.legend()
plt.show()
最后,我们将使用训练好的模型来预测未来一周的气温。首先,我们需要获取最近 30 天的数据,然后使用模型进行预测。每次预测完之后,我们将新的预测值添加到输入序列中,用于下一次的预测。
X_last30
= test_data[-TIME_STEPS:] forecast = [] for i in range(7): y_pred_one = model.predict(X_last30.reshape(1, TIME_STEPS, -1)) forecast.append(y_pred_one[0, 0]) X_last30 = np.vstack((X_last30[1:], y_pred_one))
forecast = scaler.inverse_transform(np.array(forecast).reshape(-1, 1))
以上便是使用多变量 LSTM 进行时间序列预测的整个流程。通过训练模型,我们可以获得对未来数据的预测结果,并且不仅仅考虑了单一变量的影响,而是综合了多个变量的影响。当然,这只是一个简单的例子,实际应用中可能会涉及到更加复杂的数据和模型。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27