京公网安备 11010802034615号
经营许可证编号:京B2-20210330
PyTorch 是一种广泛使用的深度学习框架,它提供了许多工具来帮助用户跟踪和记录他们的训练过程。其中一个非常有用的工具是日志记录器(logger),它可以帮助用户保存训练参数日志,以便随时追踪和分析模型性能。
在这篇文章中,我将详细介绍如何在 PyTorch 中使用 logger 来保存训练参数日志。我将首先解释什么是 logger,并为什么需要使用它。然后,我将展示如何在 PyTorch 中使用它来保存训练参数日志。最后,我将总结本文的主要内容,并提供一些有关如何最大限度地利用 logger 的建议。
什么是Logger?
Logger 是一种用于记录和跟踪程序活动的工具,通常用于记录重要事件、错误信息和其他与程序运行相关的信息。在机器学习中,logger 也可以用来跟踪训练参数、记录指标和可视化训练进度。
为什么需要使用Logger?
在进行机器学习实验时,我们通常需要跟踪许多不同的参数和指标,例如损失函数值、准确率、学习率等。同时,在许多情况下,我们可能需要在训练过程中对这些指标进行可视化,以便更好地理解模型的行为和性能。使用Logger 可以帮助我们轻松记录这些参数和指标,并且可以将其保存到文件或在线可视化工具中,从而方便后续分析和报告。
如何在PyTorch中使用Logger?
在 PyTorch 中,我们可以使用许多不同的库和工具来实现 logger 功能,其中最常用的是 TensorBoard 和 Python 自带的 logging 模块。在本文中,我将重点介绍如何使用 Python logging 模块来记录训练参数日志。
首先,我们需要导入 Python 的 logging 模块:
import logging
然后,我们可以创建一个 logger 对象,并设置其级别、格式和处理器:
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('train.log')
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
上面的代码首先创建了一个名为“name”的 logger 对象,然后将其级别设置为 DEBUG(最低级别),并定义了一个格式字符串,以便将日志记录到文件中。接下来,它创建了一个 FileHandler 对象,并将其附加到 logger 中,以便将日志记录到名为“train.log”的文件中。
一旦我们设置了 logger 和处理器,我们就可以在我们的代码中调用 logger 对象的不同方法,在适当的时间记录日志。例如,我们可以使用以下方法来记录训练损失和准确率:
logger.debug('Epoch [%d/%d], Loss: %.4f, Accuracy: %.2f%%' % (epoch + 1, num_epochs, loss.item(),
accuracy))
在上面的代码中,我们使用 debug 方法来记录训练损失和准确率。其中,我们使用了一些格式化字符串来将变量插入到日志消息中。最后,我们可以在训练结束时关闭 logger:
logger.removeHandler(file_handler)
这将从 logger 中删除之前创建的处理器,并停止将日志记录到文件中。
总结
本文介绍了如何在 PyTorch 中使用 logger 来保存训练参数日志。我们首先介绍了什么是 logger,并为什么
需要在机器学习中使用它。然后,我们演示了如何在 PyTorch 中使用 Python logging 模块来记录训练参数日志。具体而言,我们展示了如何创建 logger 对象、设置其级别、格式和处理器,并在适当的时候使用不同的方法记录日志。
最后,我想提供一些有关如何最大限度地利用 logger 的建议。首先,您应该仔细选择要记录的指标和参数,并尽量保持记录的信息简洁明了。此外,您可以考虑使用可视化工具(例如 TensorBoard)来可视化训练过程和结果,以便更好地理解模型行为。最后,您可以将日志记录到云存储或其他地方,以便可以随时访问和共享。
总之,logger 是一个非常有用的工具,可以帮助我们跟踪和记录程序的运行情况。在 PyTorch 中,使用 Python logging 模块实现 logger 功能非常简单,对于任何进行深度学习实验的人都应该掌握。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23