京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是Python中用于数据操作和分析的重要库。在Pandas中,shift()函数是一种用于将数据移动给定数量的行或列的方法。
具体来说,shift(1)可以被理解为一个参数为1的函数,它将每个元素向下移动一个位置,并用NaN填充第一行。类似地,shift(-1)将每个元素向上移动一个位置,并用NaN填充最后一行。这种移动可以应用于整个DataFrame或单个Series,并且可以用于多个不同的目的,包括计算差异、计算百分比变化、从前一个月到当前月等。
Shift()方法的使用方法很简单。下面是一些示例:
在某些情况下,我们需要计算相邻行之间的差异。例如,在股票市场数据中,我们可能需要计算每天的股票价格相对于前一天的股票价格的差异。
让我们看一个简单的例子:
import pandas as pd
data = {'day': ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], 'price': [100, 120, 130, 135, 140]} df = pd.DataFrame(data) df['price_diff'] = df['price'] - df['price'].shift(1) print(df)
在这个例子中,我们创建了一个包含日期和价格的DataFrame。然后,我们使用shift()函数计算相邻价格之间的差异,并将结果存储在新的列“ price_diff”中。输出如下:
day price price_diff 0 Monday 100 NaN 1 Tuesday 120 20.0 2 Wednesday 130 10.0 3 Thursday 135 5.0 4 Friday 140 5.0
从输出可以看出,第一行的差异值为NaN,因为没有前一天的价格数据可用。
与计算价格差异类似,有时我们需要计算相邻行之间的百分比变化。例如,在股票市场数据中,我们可能需要计算每天的股票价格相对于前一天的股票价格的百分比变化。
让我们看一个简单的例子:
import pandas as pd
data = {'day': ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], 'price': [100, 120, 130, 135, 140]} df = pd.DataFrame(data) df['price_pct_change'] = (df['price'] - df['price'].shift(1)) / df['price'].shift(1) * 100 print(df)
在这个例子中,我们创建了一个包含日期和价格的DataFrame。然后,我们使用shift()函数计算相邻价格之间的百分比变化,并将结果存储在新的列“ price_pct_change”中。输出如下:
day price price_pct_change 0 Monday 100 NaN 1 Tuesday 120 20.000000 2 Wednesday 130 8.333333 3 Thursday 135 3.846154 4 Friday 140 3.703704
从输出可以看出,第一行的百分比变化值为NaN,因为没有前一天的价格数据可用。
除了计算相邻行之间的差异和百分比变化外,shift()函数还可以用于向前/向后移动数据。这对于在时间序列数据中转换数据非常有用,例如从前一个月到当前月。
让我们看一个简单的例子:
import pandas as pd
data = {'month': ['January', 'February', 'March', 'April', 'May'], 'sales': [100, 120, 130
, 135, 140]}
df = pd.DataFrame(data)
df_forward = df.shift(1) print(df_forward)
df_backward = df.shift(-1) print(df_backward)
在这个例子中,我们创建了一个包含月份和销售额的DataFrame。然后,我们使用shift()函数将数据向前/向后移动一行,并将结果存储在新的DataFrame中。输出如下:
month sales
0 NaN NaN 1 January 100.0 2 February 120.0 3 March 130.0 4 April 135.0
month sales
0 February 120.0 1 March 130.0 2 April 135.0 3 May 140.0 4 NaN NaN
从输出可以看出,向前移动一行会将第一行移除并用NaN填充,向后移动一行会将最后一行移除并用NaN填充。
总结
以上是关于Pandas中shift(1)用法的介绍。Shift函数是一个非常有用的函数,在处理时间序列数据时尤其实用。通过对相邻数据进行移动,我们可以计算差异、计算百分比变化或进行数据转换。希望这篇800字的文章能够帮助读者更好地理解Pandas中shift(1)的用法。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。

学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23