京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是Python中用于数据操作和分析的重要库。在Pandas中,shift()函数是一种用于将数据移动给定数量的行或列的方法。
具体来说,shift(1)可以被理解为一个参数为1的函数,它将每个元素向下移动一个位置,并用NaN填充第一行。类似地,shift(-1)将每个元素向上移动一个位置,并用NaN填充最后一行。这种移动可以应用于整个DataFrame或单个Series,并且可以用于多个不同的目的,包括计算差异、计算百分比变化、从前一个月到当前月等。
Shift()方法的使用方法很简单。下面是一些示例:
在某些情况下,我们需要计算相邻行之间的差异。例如,在股票市场数据中,我们可能需要计算每天的股票价格相对于前一天的股票价格的差异。
让我们看一个简单的例子:
import pandas as pd
data = {'day': ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], 'price': [100, 120, 130, 135, 140]} df = pd.DataFrame(data) df['price_diff'] = df['price'] - df['price'].shift(1) print(df)
在这个例子中,我们创建了一个包含日期和价格的DataFrame。然后,我们使用shift()函数计算相邻价格之间的差异,并将结果存储在新的列“ price_diff”中。输出如下:
day price price_diff 0 Monday 100 NaN 1 Tuesday 120 20.0 2 Wednesday 130 10.0 3 Thursday 135 5.0 4 Friday 140 5.0
从输出可以看出,第一行的差异值为NaN,因为没有前一天的价格数据可用。
与计算价格差异类似,有时我们需要计算相邻行之间的百分比变化。例如,在股票市场数据中,我们可能需要计算每天的股票价格相对于前一天的股票价格的百分比变化。
让我们看一个简单的例子:
import pandas as pd
data = {'day': ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], 'price': [100, 120, 130, 135, 140]} df = pd.DataFrame(data) df['price_pct_change'] = (df['price'] - df['price'].shift(1)) / df['price'].shift(1) * 100 print(df)
在这个例子中,我们创建了一个包含日期和价格的DataFrame。然后,我们使用shift()函数计算相邻价格之间的百分比变化,并将结果存储在新的列“ price_pct_change”中。输出如下:
day price price_pct_change 0 Monday 100 NaN 1 Tuesday 120 20.000000 2 Wednesday 130 8.333333 3 Thursday 135 3.846154 4 Friday 140 3.703704
从输出可以看出,第一行的百分比变化值为NaN,因为没有前一天的价格数据可用。
除了计算相邻行之间的差异和百分比变化外,shift()函数还可以用于向前/向后移动数据。这对于在时间序列数据中转换数据非常有用,例如从前一个月到当前月。
让我们看一个简单的例子:
import pandas as pd
data = {'month': ['January', 'February', 'March', 'April', 'May'], 'sales': [100, 120, 130
, 135, 140]}
df = pd.DataFrame(data)
df_forward = df.shift(1) print(df_forward)
df_backward = df.shift(-1) print(df_backward)
在这个例子中,我们创建了一个包含月份和销售额的DataFrame。然后,我们使用shift()函数将数据向前/向后移动一行,并将结果存储在新的DataFrame中。输出如下:
month sales
0 NaN NaN 1 January 100.0 2 February 120.0 3 March 130.0 4 April 135.0
month sales
0 February 120.0 1 March 130.0 2 April 135.0 3 May 140.0 4 NaN NaN
从输出可以看出,向前移动一行会将第一行移除并用NaN填充,向后移动一行会将最后一行移除并用NaN填充。
总结
以上是关于Pandas中shift(1)用法的介绍。Shift函数是一个非常有用的函数,在处理时间序列数据时尤其实用。通过对相邻数据进行移动,我们可以计算差异、计算百分比变化或进行数据转换。希望这篇800字的文章能够帮助读者更好地理解Pandas中shift(1)的用法。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。

学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11