京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是一个用于数据操作和分析的Python库,它提供了许多功能强大的数据结构和工具。在使用Pandas进行数据处理和分析时,我们经常会遇到需要对数据进行格式化和转换的情况。其中一个常见的问题是当我们读取或处理具有大数字的数据时,Pandas默认使用科学计数法来表示数字。这可能会导致精度丢失和数据不准确,因此我们需要禁用科学计数法或还原二十位数字。
禁用Pandas中的科学计数法很简单,只需将Pandas选项中的“float_format”设置为None即可。以下是一个示例:
import pandas as pd # 读取CSV文件 df = pd.read_csv('data.csv') # 将float_format设置为None以禁用科学计数法 pd.options.display.float_format = None # 打印DataFrame print(df)
在上面的示例中,我们首先使用Pandas的read_csv函数读取一个包含大数字的CSV文件。然后,我们将Pandas选项中的“float_format”设置为None,这将禁用Pandas中的科学计数法。最后,我们打印DataFrame以查看结果。
默认情况下,Pandas在显示浮点数时使用科学计数法,这会导致精度丢失。如果我们需要还原二十位数字,则可以使用Python中的Decimal模块。Decimal模块提供了高精度计算,允许我们精确表示和计算任意精度的数字。
以下是一个示例:
from decimal import Decimal import pandas as pd # 读取CSV文件 df = pd.read_csv('data.csv') # 将DataFrame中的每个元素都转换为Decimal类型 df = df.applymap(lambda x: Decimal(x)) # 打印DataFrame print(df)
在上面的示例中,我们使用applymap函数将DataFrame中的每个元素都转换为Decimal类型。然后,我们可以使用Decimal对象调用其方法来执行任意精度的计算和比较。最后,我们打印DataFrame以查看结果。
需要注意的是,使用Decimal对象进行计算可能会比使用float类型更慢。因此,我们应该根据实际情况来选择使用哪种类型。
本文介绍了如何在Pandas中禁用科学计数法和如何还原二十位数字。禁用科学计数法只需将“float_format”设置为None,而还原二十位数字则需要使用Python中的Decimal模块。使用这些技巧可以帮助我们处理具有大数字的数据,并保持数据的精度和准确性。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。

学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23