numpy.einsum
是NumPy库提供的一个强大的函数,它可以对多维数组进行高效的计算和操作。einsum
函数的全称为“Einstein Summation”,它的主要功能是对多个数组进行运算并且输出结果。在这篇文章中,我们将通过介绍einsum
函数的使用方式和示例来帮助你更好地理解和运用它。
einsum
函数的基本语法如下:
numpy.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe',
optimize=False)
其中,subscripts
参数是一个字符串,用于指定计算的方式和输出结果的格式;operands
参数则是一个或多个需要参与计算的数组。其他参数包括:
subscripts
参数是einsum
函数最重要的参数之一,它用于指定计算方式和输出结果的格式。在subscripts
参数中,每个字母都代表一个维度,而逗号则表示不同的数组之间。例如,对于两个形状分别为(3, 4)
和(4, 5)
的二维数组A和B,我们可以使用以下方式来计算它们的矩阵乘积:
import numpy as np
A = np.random.rand(3, 4)
B = np.random.rand(4, 5)
C = np.einsum('ij,jk->ik', A, B)
print(C)
在这个例子中,'ij,jk->ik'
就是subscripts
参数,它表示了矩阵乘法的计算方式。具体来说,'ij'
表示第一个数组(即A)的前两个维度,'jk'
表示第二个数组(即B)的后两个维度,而'->ik'
则表示输出结果的维度应该是前两个维度与后两个维度的交叉相乘。
除了使用单个字母代表维度之外,我们还可以使用多个字母组合来表示某些轴上的求和。例如,如果我们想要计算一个三维数组的所有元素之和,可以使用以下代码:
import numpy as np
A = np.random.rand(3, 4, 5)
s = np.einsum('ijk->', A)
print(s)
在这个例子中,'ijk->'
表示对三维数组A的所有元素求和。注意,'->'
后面没有任何字母,这意味着输出结果不包含任何维度。
einsum
函数不仅可以用于矩阵乘法,还可以广泛地应用到各种线性代数、物理和机器学习问题中。其中一个常见的应用就是计算张量乘积。对于两个形状分别为(n1, n2, ..., nk)
和(m1, m2, ..., mk)
的$k$阶张量$A$和$B$,它们的乘积$C$的形状为$(n_1m_1, n_2m_2, ..., n_km_k)$,它的元素由以下公式给出:
$$C_{i_1m_1 + j_1, i_2m_2 + j_2, ..., i_km_k + j_k} = A_{i_1, i_2, ..., i_k}B_{j_1, j_2, ..., j_k}$$
其中$i_
在NumPy中,我们可以使用einsum
函数来计算张量乘积。以下是一个简单的示例:
import numpy as np
A = np.random.rand(2, 3, 4)
B = np.random.rand(5, 4, 3)
C = np.einsum('ijk,lji->il', A, B)
print(C.shape) # 输出 (2, 5)
在这个示例中,我们定义了两个三维数组A和B,它们的形状分别为(2, 3, 4)
和(5, 4, 3)
。然后,我们使用einsum
函数来计算它们的张量乘积,并将结果存储在数组C中。具体来说,我们使用字符串'ijk,lji->il'
来指定计算方式,其中'ijk'
表示第一个数组(即A)的三个维度,'lji'
表示第二个数组(即B)的三个维度,而'->il'
则表示输出结果应该是形状为(2, 5)
的二维数组。
除了矩阵乘法和张量乘积之外,einsum
函数还可以用于各种元素级别的计算。例如,我们可以使用einsum
函数来计算多个数组的元素乘积。以下是一个简单的示例:
import numpy as np
A = np.array([1, 2, 3])
B = np.array([4, 5, 6])
C = np.array([7, 8, 9])
D = np.einsum('i,i,i->', A, B, C)
print(D) # 输出 104
在这个示例中,我们定义了三个一维数组A、B和C,并且使用einsum
函数来计算它们的元素乘积。具体来说,我们使用字符串'i,i,i->'
来指定计算方式,其中每个'i'
都表示对应数组的元素,而'->'
则表示输出结果不包含任何维度。输出结果为标量值104,它是A、B和C三个数组对应位置元素相乘的总和。
numpy.einsum
函数是一个强大的工具,它可以用于各种复杂的多维数组计算和操作。本文介绍了einsum
函数的语法和参数,以及几个常见的示例。如果你需要处理多维数组数据,或者需要进行一些高级的线性代数运算,那么einsum
函数就是一个非常有用的工具。不过,在编写代码时,我们建议仔细查看einsum
函数的文档,确保正确理解计算方式和输出结果的格式,以避免出现错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03