京公网安备 11010802034615号
经营许可证编号:京B2-20210330
numpy.einsum是NumPy库提供的一个强大的函数,它可以对多维数组进行高效的计算和操作。einsum函数的全称为“Einstein Summation”,它的主要功能是对多个数组进行运算并且输出结果。在这篇文章中,我们将通过介绍einsum函数的使用方式和示例来帮助你更好地理解和运用它。
einsum函数的基本语法如下:
numpy.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe',
optimize=False)
其中,subscripts参数是一个字符串,用于指定计算的方式和输出结果的格式;operands参数则是一个或多个需要参与计算的数组。其他参数包括:
subscripts参数是einsum函数最重要的参数之一,它用于指定计算方式和输出结果的格式。在subscripts参数中,每个字母都代表一个维度,而逗号则表示不同的数组之间。例如,对于两个形状分别为(3, 4)和(4, 5)的二维数组A和B,我们可以使用以下方式来计算它们的矩阵乘积:
import numpy as np
A = np.random.rand(3, 4)
B = np.random.rand(4, 5)
C = np.einsum('ij,jk->ik', A, B)
print(C)
在这个例子中,'ij,jk->ik'就是subscripts参数,它表示了矩阵乘法的计算方式。具体来说,'ij'表示第一个数组(即A)的前两个维度,'jk'表示第二个数组(即B)的后两个维度,而'->ik'则表示输出结果的维度应该是前两个维度与后两个维度的交叉相乘。
除了使用单个字母代表维度之外,我们还可以使用多个字母组合来表示某些轴上的求和。例如,如果我们想要计算一个三维数组的所有元素之和,可以使用以下代码:
import numpy as np
A = np.random.rand(3, 4, 5)
s = np.einsum('ijk->', A)
print(s)
在这个例子中,'ijk->'表示对三维数组A的所有元素求和。注意,'->'后面没有任何字母,这意味着输出结果不包含任何维度。
einsum函数不仅可以用于矩阵乘法,还可以广泛地应用到各种线性代数、物理和机器学习问题中。其中一个常见的应用就是计算张量乘积。对于两个形状分别为(n1, n2, ..., nk)和(m1, m2, ..., mk)的$k$阶张量$A$和$B$,它们的乘积$C$的形状为$(n_1m_1, n_2m_2, ..., n_km_k)$,它的元素由以下公式给出:
$$C_{i_1m_1 + j_1, i_2m_2 + j_2, ..., i_km_k + j_k} = A_{i_1, i_2, ..., i_k}B_{j_1, j_2, ..., j_k}$$
其中$i_
在NumPy中,我们可以使用einsum函数来计算张量乘积。以下是一个简单的示例:
import numpy as np
A = np.random.rand(2, 3, 4)
B = np.random.rand(5, 4, 3)
C = np.einsum('ijk,lji->il', A, B)
print(C.shape) # 输出 (2, 5)
在这个示例中,我们定义了两个三维数组A和B,它们的形状分别为(2, 3, 4)和(5, 4, 3)。然后,我们使用einsum函数来计算它们的张量乘积,并将结果存储在数组C中。具体来说,我们使用字符串'ijk,lji->il'来指定计算方式,其中'ijk'表示第一个数组(即A)的三个维度,'lji'表示第二个数组(即B)的三个维度,而'->il'则表示输出结果应该是形状为(2, 5)的二维数组。
除了矩阵乘法和张量乘积之外,einsum函数还可以用于各种元素级别的计算。例如,我们可以使用einsum函数来计算多个数组的元素乘积。以下是一个简单的示例:
import numpy as np
A = np.array([1, 2, 3])
B = np.array([4, 5, 6])
C = np.array([7, 8, 9])
D = np.einsum('i,i,i->', A, B, C)
print(D) # 输出 104
在这个示例中,我们定义了三个一维数组A、B和C,并且使用einsum函数来计算它们的元素乘积。具体来说,我们使用字符串'i,i,i->'来指定计算方式,其中每个'i'都表示对应数组的元素,而'->'则表示输出结果不包含任何维度。输出结果为标量值104,它是A、B和C三个数组对应位置元素相乘的总和。
numpy.einsum函数是一个强大的工具,它可以用于各种复杂的多维数组计算和操作。本文介绍了einsum函数的语法和参数,以及几个常见的示例。如果你需要处理多维数组数据,或者需要进行一些高级的线性代数运算,那么einsum函数就是一个非常有用的工具。不过,在编写代码时,我们建议仔细查看einsum函数的文档,确保正确理解计算方式和输出结果的格式,以避免出现错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11