京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Matplotlib是Python中广泛使用的绘图库,可以用来绘制各种类型的图形。在绘制图形时,有时会希望去除边框以使图像更加美观。在本文中,我们将探讨如何使用Matplotlib去除边框。
首先,让我们了解一下Matplotlib中绘制图形的基本步骤。通常,我们需要导入Matplotlib库,并使用其中的plot()函数创建一个新的图形对象。然后使用其他函数添加数据、标签和标题等元素,最后通过show()函数显示图形。
以下是一个简单的Matplotlib示例代码:
import matplotlib.pyplot as plt # 创建一个新的Figure对象 fig = plt.figure() # 添加数据 x = [1, 2, 3, 4]
y = [10, 20, 30, 40]
plt.plot(x, y) # 添加标题和标签 plt.title('My Plot')
plt.xlabel('X Label')
plt.ylabel('Y Label') # 显示图形 plt.show()
在上面的代码中,我们使用Matplotlib创建了一个新的Figure对象,并向其添加了数据、标题和标签等元素,最后通过show()函数显示图形。但是,如果您运行此代码,您可能会注意到图形周围有一个默认的白色边框。
现在,我们来看看如何去除这个边框。为了实现这一点,我们可以使用Axes对象的spines属性。 在Matplotlib中,Axes对象表示图形坐标系,并包含与该坐标系相关联的所有元素(例如,数据,标题,标签等)。每个Axes对象都有四条边框,即左边,右边,顶部和底部。spines属性是Axes对象的一个字典,可以用来访问和修改这些边框。
要去除边框,我们需要将所有四条边框的颜色设置为none或透明。这可以通过以下代码实现:
import matplotlib.pyplot as plt # 创建一个新的Figure对象 fig = plt.figure() # 添加数据 x = [1, 2, 3, 4]
y = [10, 20, 30, 40]
plt.plot(x, y) # 获取Axes对象并去除边框 ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none') # 添加标题和标签 plt.title('My Plot')
plt.xlabel('X Label')
plt.ylabel('Y Label') # 显示图形 plt.show()
在上面的代码中,我们使用gca()函数获取当前的Axes对象,并分别将其四条边框的颜色设置为none。这导致边框变为透明,并从图像中消失。
值得注意的是,我们还可以使用其他方法来调整边框的外观,例如更改线型,线宽和位置。例如,以下代码将左侧边框移动到x=0处,并将其线宽设置为3:
ax.spines['left'].set_position(('data', 0))
ax.spines['left'].set_linewidth(3)
总体而言,在Matplotlib中去除边框非常简单,只需使用Axes对象的spines属性并将边框颜色设置为none即可。通过这种方式,您可以轻松创建干净,简洁和专业的图形。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02