京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师的日常概括一下就是:
下面分别展开说说:
数据分析一定有目的,这样才能确定需要的数据是什么,从什么角度来分析。
我自己是运营,平时日报、周报、月报等常规数据统计,就是为了确定我们各平台账号的情况,数据好是为什么好,数据差是为什么差,数据波动是外因还是内因……
有时候要做活动,就得先确定活动原因,比如销售、获客、激活老用户……侧重点不同,需要匹配用户画像不同,活动的成本不同,需要的重点数据也不同。
针对不同的目的,要重点参考的数据是不同,比如平时的周月报数据,看重的就是浏览、点赞、评论等,带货的话,肯定会更注重转化。
这部分工作需要掌握指标体系,一级目标也就是业务的kpi,是最终数据,二级指标是影响一级指标的因素,三级指标是对二级指标的进一步细化。
举例来说,如果我想要的数据是利润,那这就是一级指标,影响销售额的包括成本、售价、折扣、购买量、退换货率等……再往下拆分,比如成本,又可以拆分成运输成本、生产成本等。
如何准确而完整的拆分指标,对数据分析至关重要,如果你的关注点都跑偏、遗漏了,根据数据的出来的结论自然也无法保证有效。
这部分比起数据分析技巧,要更偏向对数据分析思维的要求,是数据分析整体思路的一部分,你得首先有数据分析思维,其次懂业务的整体流程。
但是一种思维方式很难一蹴而就,往往需要长期的联系,并有人给你纠偏,这样在错误和总结里才能不断提升,最终能自己做出准确判断,并形成一整套逻辑习惯。
较快的掌握这个技能和其他一些数据分析思维方面的能力,最好跟着有业务经验的人学,掌握一些成熟的分析套路,应付常见的问题。
如果你现在找不到一个特别资深的人来学习,也可以在网上找数据分析课程,现在数据分析很火,培训也很多。
比如知乎就有一个数据分析课程,研发老师自己就曾是IBM的数据分析师,还和50多位互联网大厂数据分析师进行深度访谈,并和阿里、谷歌、滴滴等公司的资深数据专家合作,结合大厂一线业务案例,能够深入浅出的讲明白那些数据分析理论是如何运用在业务里,而且还有一些个人项目、面试笔试方面的指导,都是落到了求职者需求实处的。
跑数据就不多说了,sql、python、sas什么的,数据分析工具其实不难学,编程要求也都是基础的,当然如果你想往数据挖掘大佬方向发展,那就得往深了学。
总之,跑数据其实反而是比较简单的一步。就是找准确数据来源可能一麻烦点,这个就是不同行业有不同渠道了。
这一步,我个人常用的就是excel,听起来很简单,但其实你要真能玩转excel,一些常规的数据分析就差不多能做了,而且excel不需要编程,对于想要快速入门、转行、或者仅仅用数据分析辅助工作的人来说,是更好的选择。
清洗数据就是较对一下,把重复的去掉,看看有没有小数点错误。当然,有时候会发现有些数据大量错误,完全不符合现实,可能是找数据的地方有问题,跑来的是虚假数据。
整理就是制作成图表,毕竟数据分析不能只看数,还得看对比、走向等,如果你是接需求办事,或者要给别人汇报,那就更要注意把数据转换成人话,简单易懂。
分析可以说是重中之重,就算你完成了前四部,但给不出建议,形不成方案,你都只能停留在一个工具人阶段,接需求,辅助别人做策略,可替代性极强,随时会被一脚踢开,更别说还会被计算机取代。
想要真正站稳脚跟,还得在分析上下功夫。你得从有了数据分析目标就开始思考,你要什么数据,要用什么方法分析,是5w2h更合适,还是ab测试,还是aarrr模型,还是其他什么分析方法……其实大多时候是要几种方法结合,如何结合,如何拆分,这都需要整体思维和底层逻辑。
如果你觉得你想要快速入门数据分析的思维,知乎的这个课程真的很适合,而且除了思维,课程还课程还会教大家使用常见的数据分析软件,包括数据库什么的,手把手带练,不会还能随时问老师,挺方便的。而且还有学习社群,一群人一起学总比一个人瞎学好叭,反正我学东西一定要有人陪。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15