
数据分析师的日常概括一下就是:
下面分别展开说说:
数据分析一定有目的,这样才能确定需要的数据是什么,从什么角度来分析。
我自己是运营,平时日报、周报、月报等常规数据统计,就是为了确定我们各平台账号的情况,数据好是为什么好,数据差是为什么差,数据波动是外因还是内因……
有时候要做活动,就得先确定活动原因,比如销售、获客、激活老用户……侧重点不同,需要匹配用户画像不同,活动的成本不同,需要的重点数据也不同。
针对不同的目的,要重点参考的数据是不同,比如平时的周月报数据,看重的就是浏览、点赞、评论等,带货的话,肯定会更注重转化。
这部分工作需要掌握指标体系,一级目标也就是业务的kpi,是最终数据,二级指标是影响一级指标的因素,三级指标是对二级指标的进一步细化。
举例来说,如果我想要的数据是利润,那这就是一级指标,影响销售额的包括成本、售价、折扣、购买量、退换货率等……再往下拆分,比如成本,又可以拆分成运输成本、生产成本等。
如何准确而完整的拆分指标,对数据分析至关重要,如果你的关注点都跑偏、遗漏了,根据数据的出来的结论自然也无法保证有效。
这部分比起数据分析技巧,要更偏向对数据分析思维的要求,是数据分析整体思路的一部分,你得首先有数据分析思维,其次懂业务的整体流程。
但是一种思维方式很难一蹴而就,往往需要长期的联系,并有人给你纠偏,这样在错误和总结里才能不断提升,最终能自己做出准确判断,并形成一整套逻辑习惯。
较快的掌握这个技能和其他一些数据分析思维方面的能力,最好跟着有业务经验的人学,掌握一些成熟的分析套路,应付常见的问题。
如果你现在找不到一个特别资深的人来学习,也可以在网上找数据分析课程,现在数据分析很火,培训也很多。
比如知乎就有一个数据分析课程,研发老师自己就曾是IBM的数据分析师,还和50多位互联网大厂数据分析师进行深度访谈,并和阿里、谷歌、滴滴等公司的资深数据专家合作,结合大厂一线业务案例,能够深入浅出的讲明白那些数据分析理论是如何运用在业务里,而且还有一些个人项目、面试笔试方面的指导,都是落到了求职者需求实处的。
跑数据就不多说了,sql、python、sas什么的,数据分析工具其实不难学,编程要求也都是基础的,当然如果你想往数据挖掘大佬方向发展,那就得往深了学。
总之,跑数据其实反而是比较简单的一步。就是找准确数据来源可能一麻烦点,这个就是不同行业有不同渠道了。
这一步,我个人常用的就是excel,听起来很简单,但其实你要真能玩转excel,一些常规的数据分析就差不多能做了,而且excel不需要编程,对于想要快速入门、转行、或者仅仅用数据分析辅助工作的人来说,是更好的选择。
清洗数据就是较对一下,把重复的去掉,看看有没有小数点错误。当然,有时候会发现有些数据大量错误,完全不符合现实,可能是找数据的地方有问题,跑来的是虚假数据。
整理就是制作成图表,毕竟数据分析不能只看数,还得看对比、走向等,如果你是接需求办事,或者要给别人汇报,那就更要注意把数据转换成人话,简单易懂。
分析可以说是重中之重,就算你完成了前四部,但给不出建议,形不成方案,你都只能停留在一个工具人阶段,接需求,辅助别人做策略,可替代性极强,随时会被一脚踢开,更别说还会被计算机取代。
想要真正站稳脚跟,还得在分析上下功夫。你得从有了数据分析目标就开始思考,你要什么数据,要用什么方法分析,是5w2h更合适,还是ab测试,还是aarrr模型,还是其他什么分析方法……其实大多时候是要几种方法结合,如何结合,如何拆分,这都需要整体思维和底层逻辑。
如果你觉得你想要快速入门数据分析的思维,知乎的这个课程真的很适合,而且除了思维,课程还课程还会教大家使用常见的数据分析软件,包括数据库什么的,手把手带练,不会还能随时问老师,挺方便的。而且还有学习社群,一群人一起学总比一个人瞎学好叭,反正我学东西一定要有人陪。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18