
作者: Python进阶者
来源: Python爬虫与数据挖掘
前几天在Python最强王者交流群【Chloe】问了一道Python处理的问题,如下图所示。
原始数据如下:
origin_lst = [0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4]
期望得到的结果是:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 4]
这里【老松鼠】给了一份代码,如下所示:
import itertools origin_lst = [0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4] final_lst = [x[0] for x in itertools.groupby(origin_lst)] # final_lst = [k for k, g in itertools.groupby(origin_lst)] print(final_lst)
运行之后,得到的结果可以满足预期,如下图所示:
后来【瑜亮老师】也给了一份代码,使用列表推导式,如下所示:
origin_lst = [0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4] res = [origin_lst[i] for i in range(len(origin_lst)) if i == 0 or origin_lst[i] != origin_lst[i - 1]] print(res)
运行结果如下图所示:
顺利的帮助粉丝解决了问题。
后来在【Siris】给了一个基础的方法,如下所示:
origin_lst = [0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4] result = [origin_lst[0]] for i in range(1, len(origin_lst)): if origin_lst[i] != origin_lst[i-1]: result.append(origin_lst[i]) print(result)
运行结果如下图所示:
后来在【Siris】还给了一个生成器的方法,如下所示:
origin_lst = [0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4] def del_adjacent(iterable): prev = object() for item in iterable: if item != prev: prev = item yield item result = list(del_adjacent(origin_lst)) print(result)
运行结果如下所示:
后来【Chloe】自己也给了一个enumerate方法,代码如下所示:
origin_lst = [0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4] lst_final = [] for index, val in enumerate(origin_lst): if val != origin_lst[index - 1]: lst_final.append(val) print(lst_final)
运行结果如下图所示:
条条大路通罗马,方法还是很多的!
大家好,我是皮皮。这篇文章主要盘点了一道使用Python处理数据的问题,文中针对该问题给出了具体的解析和代码实现,一共两个方法,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16