
作者:闲欢
来源:Python 技术
前面通过文章 几行代码,实现Python捕获、播放和保存摄像头视频!给大家介绍了如何读取、播放和保存视频,后面又通过文章 Python美图技术也就几行代码!给大家介绍了如何对图像的亮度、对比度、色度或者锐度进行调整,从而达到基本的图像处理操作。
其实,那两篇文章都是铺垫,都是为了给大家介绍如何对视频进行画质增强。本文将结合前面两篇文章的内容,来讲讲如何对视频画质进行增强。
想要直接看效果的,可以拉到文末。
不知道大家小时候有没有玩过这个?
最早的动画就是这么形成的,记得小时候还有这种小书卖。
其实视频的原理也是这样,一个视频是由很多张图片组成的,一个图片是一帧。所以我们要对视频进行画质增强,可以拆分成对每一帧的图片进行操作,这个操作我们在前面介绍过。
因此,对视频进行画质增强的方法可以分为三步:拆分->处理->合成。
我们在第一篇文章讲到过如何捕获摄像头的视频流,以及如何读取视频并播放。不管通过哪种方法,我们都是通过帧操作的。所以这里所谓的拆分就是获取到我们捕获到的视频流或者读取的视频流的每一帧。
success, img1 = cap.read() # 如果正确读取帧,success为True if not success: break cv2.imshow('img1', img1)
就是这么简单,我们就可以获取到视频每一帧了。
获取到视频的一帧之后,我们就要把这一帧转换成我们可以处理的格式的图片。在前面我们介绍如何对图片进行画质增强的时候,使用的是 ImageEnhance 这个函数的相关方法,这个函数是 PIL 图像处理库里面的,所以我们必须把我们每一帧的图片读取成 PIL 可以处理的格式:
image = Image.fromarray(np.uint8(img1)) # 转换成PIL可以处理的格式
读取到图像之后,我们就可以对图像进行画质增强处理了,这里还是用我们上篇文章中讲到的代码:
# 图像处理 def img_enhance(image, brightness=1, color=1,contrast=1,sharpness=1): # 亮度增强 enh_bri = ImageEnhance.Brightness(image) if brightness: image = enh_bri.enhance(brightness) # 色度增强 enh_col = ImageEnhance.Color(image) if color: image = enh_col.enhance(color) # 对比度增强 enh_con = ImageEnhance.Contrast(image) if contrast: image = enh_con.enhance(contrast) # 锐度增强 enh_sha = ImageEnhance.Sharpness(image) if sharpness: image = enh_sha.enhance(sharpness) return image
图像处理完,我们需要每一帧图像进行合成,从而得到我们最终的视频:
cap = cv2.VideoCapture('你的视频目录/xxx.mp4')
success, _ = cap.read() # 分辨率-宽度 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 分辨率-高度 height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 总帧数 frame_counter = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
video_writer = cv2.VideoWriter('输出.mp4', cv2.VideoWriter_fourcc('M', 'P', '4', 'V'), 15, (width, height), True) while success:
success, img1 = cap.read() try:
image = Image.fromarray(np.uint8(img1)) # 转换成PIL可以处理的格式 img_enhanced = img_enhance(image, 2, 2, 2, 3)
video_writer.write(np.asarray(img_enhanced)) if cv2.waitKey(1) & 0xFF == ord('q'): break except: break cap.release()
video_writer.release()
cv2.destroyAllWindows()
我这里读取的是 mp4 格式的视频,所以在合成写视频文件的时候,我们需要用
cv2.VideoWriter_fourcc('M', 'P', '4', 'V') 这个格式。
我这里没有对图片的分辨率进行修改,只是分别获取原始视频的分辨率,然后写入视频文件的时候,将原始分辨率传入作为参数。
如果你需要修改视频的分辨率的话,可以使用下面的方式:
cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])
使用 resize 方法就可以了:
resized = cv2.resize(img, (width, height), interpolation = cv2.INTER_AREA)
我们先来看看处理前的视频:
处理之后(我这里处理比较随意,参数都是随意写的)的视频是这样子的:
到此为止,我们的视频画质增强的功能算是基本实现了,代码也不复杂,加起来也就这么点。但是,如果要处理成自己满意的效果,还是需要下一番功夫去调参数,去优化。甚至针对每一帧可能传入的参数都不一样,这就需要各位自己去慢慢研究了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29