京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:闲欢
来源:Python 技术
前面通过文章 几行代码,实现Python捕获、播放和保存摄像头视频!给大家介绍了如何读取、播放和保存视频,后面又通过文章 Python美图技术也就几行代码!给大家介绍了如何对图像的亮度、对比度、色度或者锐度进行调整,从而达到基本的图像处理操作。
其实,那两篇文章都是铺垫,都是为了给大家介绍如何对视频进行画质增强。本文将结合前面两篇文章的内容,来讲讲如何对视频画质进行增强。
想要直接看效果的,可以拉到文末。
不知道大家小时候有没有玩过这个?
最早的动画就是这么形成的,记得小时候还有这种小书卖。
其实视频的原理也是这样,一个视频是由很多张图片组成的,一个图片是一帧。所以我们要对视频进行画质增强,可以拆分成对每一帧的图片进行操作,这个操作我们在前面介绍过。
因此,对视频进行画质增强的方法可以分为三步:拆分->处理->合成。
我们在第一篇文章讲到过如何捕获摄像头的视频流,以及如何读取视频并播放。不管通过哪种方法,我们都是通过帧操作的。所以这里所谓的拆分就是获取到我们捕获到的视频流或者读取的视频流的每一帧。
success, img1 = cap.read() # 如果正确读取帧,success为True if not success: break cv2.imshow('img1', img1)
就是这么简单,我们就可以获取到视频每一帧了。
获取到视频的一帧之后,我们就要把这一帧转换成我们可以处理的格式的图片。在前面我们介绍如何对图片进行画质增强的时候,使用的是 ImageEnhance 这个函数的相关方法,这个函数是 PIL 图像处理库里面的,所以我们必须把我们每一帧的图片读取成 PIL 可以处理的格式:
image = Image.fromarray(np.uint8(img1)) # 转换成PIL可以处理的格式
读取到图像之后,我们就可以对图像进行画质增强处理了,这里还是用我们上篇文章中讲到的代码:
# 图像处理 def img_enhance(image, brightness=1, color=1,contrast=1,sharpness=1): # 亮度增强 enh_bri = ImageEnhance.Brightness(image) if brightness: image = enh_bri.enhance(brightness) # 色度增强 enh_col = ImageEnhance.Color(image) if color: image = enh_col.enhance(color) # 对比度增强 enh_con = ImageEnhance.Contrast(image) if contrast: image = enh_con.enhance(contrast) # 锐度增强 enh_sha = ImageEnhance.Sharpness(image) if sharpness: image = enh_sha.enhance(sharpness) return image
图像处理完,我们需要每一帧图像进行合成,从而得到我们最终的视频:
cap = cv2.VideoCapture('你的视频目录/xxx.mp4')
success, _ = cap.read() # 分辨率-宽度 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 分辨率-高度 height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 总帧数 frame_counter = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
video_writer = cv2.VideoWriter('输出.mp4', cv2.VideoWriter_fourcc('M', 'P', '4', 'V'), 15, (width, height), True) while success:
success, img1 = cap.read() try:
image = Image.fromarray(np.uint8(img1)) # 转换成PIL可以处理的格式 img_enhanced = img_enhance(image, 2, 2, 2, 3)
video_writer.write(np.asarray(img_enhanced)) if cv2.waitKey(1) & 0xFF == ord('q'): break except: break cap.release()
video_writer.release()
cv2.destroyAllWindows()
我这里读取的是 mp4 格式的视频,所以在合成写视频文件的时候,我们需要用
cv2.VideoWriter_fourcc('M', 'P', '4', 'V') 这个格式。
我这里没有对图片的分辨率进行修改,只是分别获取原始视频的分辨率,然后写入视频文件的时候,将原始分辨率传入作为参数。
如果你需要修改视频的分辨率的话,可以使用下面的方式:
cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])
使用 resize 方法就可以了:
resized = cv2.resize(img, (width, height), interpolation = cv2.INTER_AREA)
我们先来看看处理前的视频:
处理之后(我这里处理比较随意,参数都是随意写的)的视频是这样子的:
到此为止,我们的视频画质增强的功能算是基本实现了,代码也不复杂,加起来也就这么点。但是,如果要处理成自己满意的效果,还是需要下一番功夫去调参数,去优化。甚至针对每一帧可能传入的参数都不一样,这就需要各位自己去慢慢研究了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27