
作者:闲欢
来源:Python 技术
前面通过文章 几行代码,实现Python捕获、播放和保存摄像头视频!给大家介绍了如何读取、播放和保存视频,后面又通过文章 Python美图技术也就几行代码!给大家介绍了如何对图像的亮度、对比度、色度或者锐度进行调整,从而达到基本的图像处理操作。
其实,那两篇文章都是铺垫,都是为了给大家介绍如何对视频进行画质增强。本文将结合前面两篇文章的内容,来讲讲如何对视频画质进行增强。
想要直接看效果的,可以拉到文末。
不知道大家小时候有没有玩过这个?
最早的动画就是这么形成的,记得小时候还有这种小书卖。
其实视频的原理也是这样,一个视频是由很多张图片组成的,一个图片是一帧。所以我们要对视频进行画质增强,可以拆分成对每一帧的图片进行操作,这个操作我们在前面介绍过。
因此,对视频进行画质增强的方法可以分为三步:拆分->处理->合成。
我们在第一篇文章讲到过如何捕获摄像头的视频流,以及如何读取视频并播放。不管通过哪种方法,我们都是通过帧操作的。所以这里所谓的拆分就是获取到我们捕获到的视频流或者读取的视频流的每一帧。
success, img1 = cap.read() # 如果正确读取帧,success为True if not success: break cv2.imshow('img1', img1)
就是这么简单,我们就可以获取到视频每一帧了。
获取到视频的一帧之后,我们就要把这一帧转换成我们可以处理的格式的图片。在前面我们介绍如何对图片进行画质增强的时候,使用的是 ImageEnhance 这个函数的相关方法,这个函数是 PIL 图像处理库里面的,所以我们必须把我们每一帧的图片读取成 PIL 可以处理的格式:
image = Image.fromarray(np.uint8(img1)) # 转换成PIL可以处理的格式
读取到图像之后,我们就可以对图像进行画质增强处理了,这里还是用我们上篇文章中讲到的代码:
# 图像处理 def img_enhance(image, brightness=1, color=1,contrast=1,sharpness=1): # 亮度增强 enh_bri = ImageEnhance.Brightness(image) if brightness: image = enh_bri.enhance(brightness) # 色度增强 enh_col = ImageEnhance.Color(image) if color: image = enh_col.enhance(color) # 对比度增强 enh_con = ImageEnhance.Contrast(image) if contrast: image = enh_con.enhance(contrast) # 锐度增强 enh_sha = ImageEnhance.Sharpness(image) if sharpness: image = enh_sha.enhance(sharpness) return image
图像处理完,我们需要每一帧图像进行合成,从而得到我们最终的视频:
cap = cv2.VideoCapture('你的视频目录/xxx.mp4')
success, _ = cap.read() # 分辨率-宽度 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 分辨率-高度 height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 总帧数 frame_counter = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
video_writer = cv2.VideoWriter('输出.mp4', cv2.VideoWriter_fourcc('M', 'P', '4', 'V'), 15, (width, height), True) while success:
success, img1 = cap.read() try:
image = Image.fromarray(np.uint8(img1)) # 转换成PIL可以处理的格式 img_enhanced = img_enhance(image, 2, 2, 2, 3)
video_writer.write(np.asarray(img_enhanced)) if cv2.waitKey(1) & 0xFF == ord('q'): break except: break cap.release()
video_writer.release()
cv2.destroyAllWindows()
我这里读取的是 mp4 格式的视频,所以在合成写视频文件的时候,我们需要用
cv2.VideoWriter_fourcc('M', 'P', '4', 'V') 这个格式。
我这里没有对图片的分辨率进行修改,只是分别获取原始视频的分辨率,然后写入视频文件的时候,将原始分辨率传入作为参数。
如果你需要修改视频的分辨率的话,可以使用下面的方式:
cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])
使用 resize 方法就可以了:
resized = cv2.resize(img, (width, height), interpolation = cv2.INTER_AREA)
我们先来看看处理前的视频:
处理之后(我这里处理比较随意,参数都是随意写的)的视频是这样子的:
到此为止,我们的视频画质增强的功能算是基本实现了,代码也不复杂,加起来也就这么点。但是,如果要处理成自己满意的效果,还是需要下一番功夫去调参数,去优化。甚至针对每一帧可能传入的参数都不一样,这就需要各位自己去慢慢研究了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15