京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家泰勒·理查兹@脸书
大约每个月,我都会收到一封电子邮件,问我如何进入数据科学,我已经回答得够多了,所以我决定把它写在这里,这样我就可以把人们链接到它。所以如果你是这些学生中的一员,欢迎!
我将把它分成基本的建议,如果你只在谷歌上搜索“如何进入数据科学”,就可以很容易地找到这些建议,以及不太常见的建议,但我多年来发现这些建议非常有用。我将从后者开始,然后转向基本建议。显然,对此要半信半疑,因为所有的建议都带有一点生存偏见。
1。查找坚实的社区
如果你在大学里,在那里的一半意义是找到像你这样聪明、有抱负、有动力的人来学习和成长。对我的母校来说,这个社区是数据科学和信息学俱乐部。社区/网络帮助你开始,让你保持动力,并且是获得实习和长期全职工作的关键。
2。将数据科学应用于您喜欢的事物
擅长任何事情都很难(杜),将数据科学应用到你关心的领域或领域可以帮助你保持动力并脱颖而出。我举了几个例子:Usinguf(母校)的学生政府选举,学习机器学习方法,或者通过记录我们的乒乓球比赛来跟踪我朋友的Elo成绩。这些项目教会了我基本的技能,但没有明显的工作感觉。
获得代表你将来想要执行的工作的有用的实践是至关重要的,因为通过这种实践,你只能得到两件事中的一件:
a.意识到你实际上并不喜欢这种类型的数据科学,在这种情况下,你应该立即停止阅读
B.你可以很容易地写(博客)或谈论(给想付钱给你的人)的宝贵经验
这就引出了我的下一个观点。
3。尽量减少“能力证明点击”
招聘人员会花15秒在你的简历上,潜在团队会花1-5分钟(最多)在你的简历+网站/GitHub上(访问者tomy投资组合网站平均会花2分16秒再继续)。这两个群体都经常使用GPA、学校质量或科技公司数据的经验等能力指标(我称之为身份证明)。因此,你应该仔细考虑向读者发出信号所需的时间,告诉他们你可以做他们想招聘的任何工作。要考虑的一个粗略指标是点击证明能力。
如果招聘人员不得不点击Github中正确的存储库,然后点击文件,直到他们发现Jupyter笔记本中有不可读的代码(但没有注释),你就已经输了。如果招聘人员在你的简历上看到机器学习,但你需要点击5次才能看到任何ML产品或代码,你就已经输了。任何人都可以在简历上撒谎;用一个观点来迅速引导读者的注意力,你就会处于一个明显更好的位置。
在我的网站上,我想优化这个指标的方式非常清楚。浏览文本大约需要10秒钟(我敢打赌大多数人不会一直读下去),然后人们可以立即选择一个数据科学项目来查看,这些项目根据它们展示我所能做的工作的程度进行排序。对于在DS中开始,我强烈建议制作一个网站(即使是一个引导模板网站也很好),并将其托管在Github页面或heroku上。
4。通过研究或入门级工作学习
在你做了这三件事之后,看看你是否能说服某人付钱给你学习数据科学。我喜欢UF有一个很棒的选举数据科学小组(麦克唐纳博士和史密斯博士目前负责),但如果你去任何一个研究小组采访他们,他们可能会为你的工作付钱。最终,有了这样的经验,你就可以申请实习并获得丰厚的报酬。这里的关键是不要一开始就寻找那些令人难以置信的花哨的DS实习机会,而是在当地有数据科学任务但没有足够的钱雇佣一名全职数据科学家的公司或研究小组。数据科学学习快速复合,所以现在就开始吧!考虑到所有这些,让我们继续讨论更基本的建议。
数据科学主要是应用于任何领域的编程和统计,所以这两个领域的背景是至关重要的。
1。统计信息
尽快获得一个良好的统计背景(参加课程,在线学习)。教科书会带你走得更远,好奇心会带你走得更远。
书籍/资源:
2。编程
学习Python或R,并真正擅长它。每天做一些新的事情,每周至少花5-10个小时在上面。在此之后学习SQL。你不能跳过这个。
书籍/资源:
3。业务经验
在宝洁,我的数据科学工作被应用于零售业。在脸书,诚信问题。保护民主,呃,民主。学习数据科学在某些业务环境中的应用是很困难的,需要实践,并且通常涉及到对度量、产品分析和激励结构的扎实理解。这非常符合第二个不太基本的建议。
学习数据科学很难,但我发现它非常有价值。我给你的最后一个提议,作为阅读这篇长篇文章的交换,是说一旦你把数据科学应用到你感兴趣的问题上,并把它发布到网上的某个地方,在推特上把它写给我,我保证会阅读并转发它。祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23