京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由数据科学家米斯拉·图尔普
作为一名资深数据科学家被视为一种圣杯,尽管许多人并不知道担任一个高级职位的真正含义。最常见的印象是,作为一名资深数据科学家意味着你知道关于数据科学的一切,你是一名真正的专家。这是真的,但只是在一定程度上,因为数据科学中的收入永远不会结束。此外,作为一名资深数据科学家,不仅仅是技术知识,还有很多东西要做。
你可能会想,是的,但我为什么要关心呢?我相信了解数据科学家遵循的标准路径是很重要的,这样你就可以更明智地决定你想走哪条路。简单地说,你了解的越多,就越容易在两家公司、两个职位或两个项目之间做出选择。
[参加免费数据科学入门迷你课程,可以更好地了解什么是数据科学,它如何在更大的人工智能世界中定位,以及对学习有什么要求。]
让我们来看看数据科学家平时的职业是什么样子。
背景
作为一名初级数据科学家,对你的期望是拥有基本的数据科学知识。你的能力应该足以独自完成你的任务,或者在更资深的同事的帮助下完成任务。在这个时间点上,你不会有太多专业的动手经验。
学习
你应该对学习持开放态度,不要害怕问很多问题。更多的资深同事会很乐意帮助你学习。作为一名初级数据科学家,如果你每天都学到一些新东西,这并不奇怪。
项目
你的主要责任将是分配给你的任务。你会在遇到问题时得到更资深数据科学家的协助。除了您的技术能力之外,您还需要很好地理解与您的特定任务相关的领域的各个部分。
在初级数据科学家之后,您可能会处于一个过渡角色,在这个角色中,您将被简单地称为:数据科学家。
背景
在这一点上,您对数据科学的主要概念和技术的知识必须是扎实的。虽然这并不意味着你已经知道了一切。相反,它意味着你知道很多事情,你也知道你不知道的。你可能已经在这个级别上获得了一些很好的实践经验。
学习
学习永远不会结束,所以你仍然对新的想法和方法持开放态度。你仍然会问很多问题,但你也会被别人问到问题。初级同事带着他们的问题来找你。你仍然学习新的东西,也许不是每天,而是每隔一个月。您试图更深入地了解某些技术和工具。
项目
您是项目决策过程的一部分。你对项目的背景有一个很好的整体理解,但你仍然不需要知道比你需要做你的工作更多的东西。
然后是高级数据科学家的职位。在这一点上,您基本上是数据科学家的一切,具有一些额外的能力和责任。让我们看看它们是什么。
背景
您对主要概念和技术有坚实的理解,也对它们的陷阱有更深的了解。你在从事项目时获得了这些知识。现在你有了扎实的实践经验。
学习
因为你已经掌握了基本概念,所以你更容易学习更高级的主题。你仍然对学习持开放态度。教和支持更多的初级同事是你工作的一部分。
项目
你是项目的领导者。你不仅是决策过程的一部分,而且你领导着它。项目的成功是你的责任,在许多情况下,也是你团队成员的幸福。在领导项目的同时,你还需要与外界沟通。向业务方汇报是你的责任。在项目中工作时,您需要记住非技术约束,并确保将技术团队推向正确的方向。您必须对上下文和域有一个整体和完整的理解。保持目标和交付是你的责任。
当然,这并不是世界上每个公司的每个数据科学家的职业生涯都是这样的。此外,你可能是一个自由数据科学家,或者你可能创办你的公司,成为一个CTO,那么你的道路看起来会非常不同。但总的来说,从我和数据科学界的人交谈所学到的,这是一个普通数据科学家职业道路的很好的表现。
我们今天研究这个问题的原因是,每家公司都有自己的结构,自己的规则和自己的道路,当你得到选择时,你想知道该选择哪一个。有些人会倾向于更多的技术工作,因为你得到了更高的职位,有些人会倾向于更多的管理和行政工作。你可以用这篇文章中的解释作为一个基线,来找出你在旅途的高级阶段想要达到的位置,并相应地校准你的求职。当然,计划和偏好会随着时间而改变。但是,有一个想法,你想在哪里结束比盲目地进入它要好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05