
作者:CHEONG AI
来源:机器学习与知识图谱
本文分享一篇ICLR 2021的文章AdaGCN:Adaboosting Graph Convolutional Networks into Deep Models,AdaGCN模型的核心思想是将传统机器学习中AdaBoost的思想引入到图神经网络中,另外,与之前深层图模型直接堆叠多个卷积层不同,AdaGCN在所有网络层之间共享相同的神经网络架构,然后进行递归优化,类似于RNN。
Paper:https://arxiv.org/abs/1908.05081
Github:https://github.com/datake/AdaGCN
一、摘要
深度图模型仍是一个有待研究的问题,关键之处在于如何有效地汇聚来自多跳邻居节点的特征信息。在本文中,通过将AdaBoost融入到图网络中提出了一个类似于RNN的深度图模型AdaGCN,能够以Adaboost的方式高效的抽取多跳邻居特征信息,不同于之前的深度图模型直接堆叠多个卷积层,AdaGCN在所有网络层之间共享相同的神经网络架构。另外,从理论角度分析了AdaGCN和现有的GCN模型的关联,最后,通过大量的实验,证明了我们的方法在不同的标签率和计算优势下始终保持最先进的性能。
二、模型
首先,最简单的两个卷积层的GCN模型公式如下
其中输入是节点的Raw Features,输出是经过两个卷积层的最终表征。ReLU是一个非线性激活函数。但是,我们认为对于多层GCN网络不需要太多的非线性变化,原因在于节点特征是简单的一维向量而不是多维的。这个想法在SGC模型也已经提出过,直接将非线性变化ReLU函数去除的SGC模型的汇聚公式如下所示
在SGC模型中,将RuLU操作去除后确实在一定程度上缓解了深度图模型常出现的Over-Smoothing问题,并且计算效率也更快;但是,我们认为,对于这种多层堆叠的GCN网络来说,没有了ReLU操作的多层堆叠线性变换也会很大程度降低模型的表征能力,同时也通过实验证明了这个想法。
因此,在本文中,我们提出了一个新的非线性函数来替换没有激活函数的线性变换,公式如下所示
那么,如何使用AdaBoost?其实就是把深度模型的每一层输出的结果放到一个弱分类器中计算,并使用了SAMME(Stagewise Additive Modeling using a Multi-class Exponential Loss function)算法将多个弱分类器结合起来
如上图所示,我们直接使用基分类器f函数来抽取特征信息,当前层的加权错误概率以及基分类器的权重以如下方式计算
为了得到一个正的权重,需要保证
同时,在传播过程中向错误的节点增加权重以保证其的值减少,也就是对性能差的分类器给予较少的权重
然后,利用Adaboost方法将不同层的预测结果进行组合,得到最终的预测结果
我们也提供了AdaGCN的简化形势
三、实验
我们是在Cora,Citeseer,Pubmed,MS Academic和Reddit五个数据集上进行了实验,通过run 100次实验取平均来保证结果的置信度,取得了SOTA效果,
并且,如下图所示,随着模型深度增加,模型性能不会因为Over-Smoothing问题而下滑
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29