京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:CHEONG AI
来源:机器学习与知识图谱
本文分享一篇ICLR 2021的文章AdaGCN:Adaboosting Graph Convolutional Networks into Deep Models,AdaGCN模型的核心思想是将传统机器学习中AdaBoost的思想引入到图神经网络中,另外,与之前深层图模型直接堆叠多个卷积层不同,AdaGCN在所有网络层之间共享相同的神经网络架构,然后进行递归优化,类似于RNN。
Paper:https://arxiv.org/abs/1908.05081
Github:https://github.com/datake/AdaGCN
一、摘要
深度图模型仍是一个有待研究的问题,关键之处在于如何有效地汇聚来自多跳邻居节点的特征信息。在本文中,通过将AdaBoost融入到图网络中提出了一个类似于RNN的深度图模型AdaGCN,能够以Adaboost的方式高效的抽取多跳邻居特征信息,不同于之前的深度图模型直接堆叠多个卷积层,AdaGCN在所有网络层之间共享相同的神经网络架构。另外,从理论角度分析了AdaGCN和现有的GCN模型的关联,最后,通过大量的实验,证明了我们的方法在不同的标签率和计算优势下始终保持最先进的性能。
二、模型
首先,最简单的两个卷积层的GCN模型公式如下
其中输入是节点的Raw Features,输出是经过两个卷积层的最终表征。ReLU是一个非线性激活函数。但是,我们认为对于多层GCN网络不需要太多的非线性变化,原因在于节点特征是简单的一维向量而不是多维的。这个想法在SGC模型也已经提出过,直接将非线性变化ReLU函数去除的SGC模型的汇聚公式如下所示
在SGC模型中,将RuLU操作去除后确实在一定程度上缓解了深度图模型常出现的Over-Smoothing问题,并且计算效率也更快;但是,我们认为,对于这种多层堆叠的GCN网络来说,没有了ReLU操作的多层堆叠线性变换也会很大程度降低模型的表征能力,同时也通过实验证明了这个想法。
因此,在本文中,我们提出了一个新的非线性函数来替换没有激活函数的线性变换,公式如下所示
那么,如何使用AdaBoost?其实就是把深度模型的每一层输出的结果放到一个弱分类器中计算,并使用了SAMME(Stagewise Additive Modeling using a Multi-class Exponential Loss function)算法将多个弱分类器结合起来
如上图所示,我们直接使用基分类器f函数来抽取特征信息,当前层的加权错误概率以及基分类器的权重以如下方式计算
为了得到一个正的权重,需要保证
同时,在传播过程中向错误的节点增加权重以保证其的值减少,也就是对性能差的分类器给予较少的权重
然后,利用Adaboost方法将不同层的预测结果进行组合,得到最终的预测结果
我们也提供了AdaGCN的简化形势
三、实验
我们是在Cora,Citeseer,Pubmed,MS Academic和Reddit五个数据集上进行了实验,通过run 100次实验取平均来保证结果的置信度,取得了SOTA效果,
并且,如下图所示,随着模型深度增加,模型性能不会因为Over-Smoothing问题而下滑
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04