京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
如何在线执行 pandas 代码感兴趣,今天就简单来说一下我探索这一功能的过程。
首先在设计这一功能时,需要先明确大致需求:
其中最重要的一点就是用户可以在当前网站、当前单元格执行代码,其次尽可能的减少其他操作。
其实为了实现这个功能,我探索了大半个月,不断修改方案,删掉了几个写了很久但是不能完美实现的代码,几度放弃,最后还是磕磕碰碰的做出来,下面是我的一些经验,仅供参考。
首先最简单的思路就是用自己的服务器,前端写一个输入框,然后将用户提交的代码到后台,执行后再返回前端,就像这样
但是思索了一番还是放弃了,除了要防止恶意用户执行sudo rm - rf /*之类的代码,为了满足第二个需求就要给每个用户分配一定的空间,这就很吃服务器的配置,例如前天最高100+用户同时运行,我的 4c8g 服务器肯定是带不动的。
并且如果采取这个的方案,理论上可以实现,但除了升级服务器要钱,我也没有开发类似产品的经验,时间成本不好预估,遂放弃。
之后又是一番面向 stackoverflow 编程,我了解到很多可以在线执行代码的网站,就像这样
确实可以在线执行一段代码,但是除去我是否能做出来,如何控制权限等问题,这样的网站主要是以执行代码为主,无法完成 pandas 教程的任务。
并且代码不能预设置,只能进入页面后手动输入,本地数据也不好加载,而且执行一次就要跳转到一个新的页面,十分繁琐(写一个爬虫接口也是一个办法,但是就太依赖对方网站),于是很快放弃了这条思路。
继续一番搜索后,我发现了一个神器 —— Jupyterhub
如上图架构展示的一样,使用Jupyterhub 可以给每个用户分配一个独立的Jupyter Notebook,并且无需考虑权限等问题,我也可以提前将代码和数据进行预设。
但问题在于采取此方案无法满足教程需求,因为全部内容都需要放在 Jupyter Notebook中,整体上就是将 pandas300题做成了在线版,而我想要的是一个网站。
并且使用Jupyterhub不可避免的要进行一些 docker 或 k8s 操作,这也不是我熟悉的领域,虽热在这条思路上走了一段时间,但还是放弃了。
之后又是一番检索,但无非都是上面几种方案,在我感觉要放弃做这个网站时,无意中发现一个项目JupyterBook
简单来说,他可以将你的 Jupyter Notebook 转换为 html 页面(基于 sphinx),并且一个很重要的特点就是可以在线、交互式执行代码。
具体怎么实现的呢?首先需要将你的项目上传到一个公共资源平台binder,这个网站会为你的项目创建一个镜像,这样可以方便给不同用户使用
简单来说,可以理解为将你的 Jupyter Notebook 挂在这个网站,别人就能去在线执行,但是很明显,我们都需要跳转到这个页面去使用,而我希望在当前页面执行代码。
这时就需要在使用另一个项目(Thebe)
它使用JupyterLab API,通过加载一段JS代码,再指定一个执行后端(上面提到的binder),就可以在当前页面执行代码。
听起来很复杂,但是实现起来很简单,上面我们说到,JupyterBook 是基于 Sphinx制作页面的,所以只需要提前在配置 Sphinx时加载 sphinx_thebe插件即可,
至此,开头我需求中的1、2就完美实现了,还剩最后一个问题就是如何让用户更少的执行代码?
如果你体验过我的网站,你会发现执行一个 pandas 操作连 import pandas as pd和读取数据的操作都不用!
其实这些代码在启动jupyter notebook时就预先加载了,只需要在对应单元格上加上 thebe-init的 tag 即可。
当然,使用 JupyterBook 还是有很多坑,消耗我最多的时间就是在修改样式上,默认的样式如下,可能英文状态下表现还行,但是到中文并不是很适配
为了大家不仅用的爽,我对网站颜值的要求也很高,于是爆改了几千行的 css 和 js 代码,甚至组件的位置都调整到小数点后两位才让我满意,磕磕碰碰一个多月终于将整个网站做出来
最后,本文仅是对在线执行代码做了一个快速、不完整的总结。由于篇幅限制,还有很多搭建、部署网站细节的内容没有涉及到,如果你觉得不错,欢迎点赞、转发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22