
作者:俊欣
来源:关于数据分析与可视化
大家好,又是新的一周,也是2021年的最后一周,今天小编来和大家说一说怎么从DataFrame数据集中筛选符合指定条件的数据,希望会对读者朋友有所帮助。
我们先导入pandas模块,并且读取数据,代码如下
import pandas as pd
df = pd.read_csv("netflix_titles.csv")
df.head()
首先我们可以根据文本内容直接来筛选,返回的是True如果文本内容是相匹配的,False如果文本内容是不匹配的,代码如下
mask = df['type'].isin(['TV Show'])
mask.head()
output
0 False 1 True 2 True 3 True 4 True Name: type, dtype: bool
然后我们将这个mask作用到整个数据集当中,返回的则是满足与True条件的数据
df[mask].head()
output
当然我们也可以和.loc方法来相结合,只挑选少数的几个指定的列名,代码如下
df.loc[mask, ['title','country','duration']].head()
output
title country duration 1 Blood & Water South Africa 2 Seasons 2 Ganglands NaN 1 Season 3 Jailbirds New Orleans NaN 1 Season 4 Kota Factory India 2 Seasons 5 Midnight Mass NaN 1 Season
当然要是我们所要筛选的文本内容并不仅仅只有1个,就可以这么来操作,代码如下
mask = df['type'].isin(['Movie','TV Show'])
结果返回的是True,要是文本内容全部都匹配,要是出现一个不匹配的现象则返回的是False
我们可以根据某个关键字来筛选数据,数据集当中的listed-in包含的是每部电影的种类,当然很多电影并不只有一个种类,而是同时涉及到很多个种类,例如某一部电影既有“科幻”元素,也有“爱情”元素同时还包含了部分“动作片”的元素。
我们按照某个关键字来筛选,例如筛选出包含了“horror”这个关键字的影片,代码如下
mask = df['listed_in'].str.contains('horror', case=False, na=False)
其中的case=False表明的是忽略字母的大小写问题,na=False表明的是对于缺失值返回的是False,
df[mask].head()
output
而要是文本数据当中包含了一些特殊符号,例如+、^以及=等符号时,我们可以将regex参数设置成False(默认的是True),这样就不会被当做是正则表达式的符号,代码如下
df['a'].str.contains('^', regex=False)
#或者是 df['a'].str.contains('^')
当关键字不仅仅只有一个的时候,就可以这么来操作
pattern = 'horror|stand-up' mask = df['listed_in'].str.contains(pattern, case=False, na=False)
df[mask].sample(5)
output
我们用了|来表示“或”的意思,将电影类别包含“horror”或者是“stand-up”这两类的电影筛选出来
除此之外,我们还可以这么来做
mask1 = df['listed_in'].str.contains("horror", case=False)
mask2 = df['listed_in'].str.contains("stand-up", case=False)
df[mask1 | mask2].sample(5)
出来的结果和上述一样,只不过过程可能稍加繁琐,除了|表示的是“或”之外,也有表示的是和,也就是&标识符,意味着条件全部都需要满足即可,例如
mask1 = (df['listed_in'].str.contains('horror', case=False, na=False))
mask2 = (df['type'].isin(['TV Show']))
df[mask1 & mask2].head(3)
output
我们可以添加多个条件在其中,多个条件同时满足,例如
mask1 = df['rating'].str.contains('tv', case=False, na=False)
mask2 = df['listed_in'].str.contains('tv', case=False, na=False)
mask3 = df['type'].str.contains('tv', case=False, na=False)
df[mask1 & mask2 & mask3].head()
output
我们同时也可以将正则表达式应用在如下的数据筛选当中,例如str.contains('str1.*str2')代表的是文本数据是否以上面的顺序呈现,
pattern = 'states.*mexico' mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
其中.*在正则表达式当中表示匹配除换行符之外的所有字符,我们需要筛选出来包含states以及mexico结尾的文本数据,我们再来看下面的例子
pattern = 'states.*mexico|mexico.*states' mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
我们筛选出来的文本数据满足两个条件当中的一个即可
有一些筛选数据的方式可能稍显复杂,因此需要lambda方法的介入,例如
cols_to_check = ['rating','listed_in','type']
pattern = 'tv' mask = data[cols_to_check].apply(
lambda col:col.str.contains(
pattern, na=False, case=False)).all(axis=1)
我们需要在rating、listed_in以及type这三列当中筛选出包含tv的数据,我们来看一下结果如何
df[mask].head()
output
我们再来看下面的这个例子,
mask = df.apply(
lambda x: str(x['director']) in str(x['cast']),
axis=1)
上面的例子当中是来查看director这一列是否被包含在了cast这一列当中,结果如下
df[mask].head()
output
我们还可以通过filter方法来筛选文本的数据,例如筛选出列名包含in的数据,代码如下
df.filter(like='in', axis=1).head(5)
output
当然我们也可以用.loc方法来实现,代码如下
df.loc[:, df.columns.str.contains('in')]
出来的结果和上述的一样
要是我们将axis改成0,就意味着是针对行方向的,例如筛选出行索引中包含Love的影片,代码如下
df_1 = df.set_index('title')
df_1.filter(like='Love', axis=0).head(5)
output
当然我们也可以通过.loc方法来实现,代码如下
df_1.loc[df_1.index.str.contains('Love'), :].head()
我们可以使用query方法,例如我们筛选出国家是韩国的影片
df.query('country == "South Korea"').head(5)
output
例如筛选出影片的添加时间是11月的,代码如下
mask = df["date_added"].str.startswith("Nov")
df[mask].head()
output
那既然用到了startswith方法,那么就会有endswith方法,例如
df['col_name'].str.endswith('2019')
除此之外还有这些方法可以用来筛选文本数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18