
作者:俊欣
来源:关于数据分析与可视化
前两篇Pyecharts的文章来帮我们简单的梳理了一下可以用Pyecharts来绘制哪些图表之后,本篇文章我们用pyecharts里面的一些组件,将绘制的图表都组合起来
首先介绍Pyecharts模块当中的Grid组件,使用Grid组件可以很好地将多张图无论是上下组合还是左右组合,都能够很好地拼接起来,我们先来看第一个例子
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="直方图"))
)
line = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="折线图", pos_top="48%"),
legend_opts=opts.LegendOpts(pos_top="48%"),
)
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
.add(line, grid_opts=opts.GridOpts(pos_top="50%"))
.render("水平组合图_test.html")
)
我们可以看到两张图表被以上下组合的方式拼接起来,当然除了上下的拼接以外,我们还可以左右来拼接,代码如下
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="直方图"),legend_opts=opts.LegendOpts(pos_left="20%"),)
)
line = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="折线图", pos_right="5%"),
legend_opts=opts.LegendOpts(pos_right="20%"),
)
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_left="60%"))
.add(line, grid_opts=opts.GridOpts(pos_right="50%"))
.render("垂直组合图_test.html")
)
可以看到我们无论是想上下拼接还是左右拼接,都可以通过调整参数“pos_left”、“pos_right”、“pos_top”以及“pos_bottom”这几个参数来实现,我们再来看一下下面这个例子,我们也可以将地图和直方图两者拼接起来
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(legend_opts=opts.LegendOpts(pos_left="20%"))
) map = (
Map()
.add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="地图-基本示例"))
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_top="50%", pos_right="75%"))
.add(map, grid_opts=opts.GridOpts(pos_left="60%"))
.render("地图+直方图.html")
)
英文单词“overlap”的意思是重叠,那么放在这里,也就指的是可以将多张图合并成一张,那么该怎么结合才好呢?我们来看一下下面这个例子,我们将直方图和折线图通过overlap组件组合到一起
v1 = Faker.values()
v2 = Faker.values()
v3 = Faker.values()
bar = (
Bar()
.add_xaxis(Faker.provinces)
.add_yaxis("商家A", v1)
.add_yaxis("商家B", v2)
.extend_axis(
yaxis=opts.AxisOpts(
axislabel_opts=opts.LabelOpts(formatter="{value} 个"), interval=20
)
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="Overlap-bar+line"),
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 个")),
)
)
line = Line().add_xaxis(Faker.provinces).add_yaxis("商家C", v3, yaxis_index=1)
bar.overlap(line)
bar.render("直方图+折线图Overlap.html")
除此之外,我们也可以将散点图和折线图合并在一张图上面,在代码上就只要将直方图的代码替换成散点图的就行,这边也就具体不做演示
我们也可以将上面提高的两个组件结合起来使用,以此来绘制多条Y轴的直方图图表,代码如下
Bar()
.add_xaxis(x_data)
.add_yaxis( "A",
[具体相关的数据],
yaxis_index=0,
color="#d14a61",
)
.add_yaxis( "B",
[具体相关的数据],
yaxis_index=1,
color="#5793f3",
)
.直方图的全局配置代码....
line = (
Line()
.add_xaxis(x_data)
.add_yaxis( "C",
[具体相关的数据],
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render("test.html")
我们在用Pyecharts绘制了多张图表之后,可以直接Tab组件将多张图表连起来,一页放一张图表,具体看下面的例子和代码,
def bar_datazoom_slider() -> Bar: c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家A", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
datazoom_opts=[opts.DataZoomOpts()],
)
) return c def line_markpoint() -> Line: c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis( "商家A",
Faker.values(),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="折线图"))
) return c def pie_rosetype() -> Pie: v = Faker.choose()
c = (
Pie()
.add( "",
[list(z) for z in zip(v, Faker.values())],
radius=["30%", "75%"],
center=["25%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="饼图-玫瑰图示例"))
) return c
tab = Tab()
tab.add(bar_datazoom_slider(), "直方图")
tab.add(line_markpoint(), "折线图")
tab.add(pie_rosetype(), "饼图")
tab.render("tab_base.html")
分别将所绘制的三张图表放置在三个页面当中,通过pyecharts库当中的tab串联起来
和上面Tab组件不一样的是,Tab组件是一页放一张图表,有几张图表就分成几页,而Page组件则是将绘制完成的多张图表统统放在一张页面里面,代码的改动上面也十分的简单,只要将上面代码的Tab部分改成Page()即可,如下
def bar_datazoom_slider() -> Bar: c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家A", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
datazoom_opts=[opts.DataZoomOpts()],
)
) return c def line_markpoint() -> Line: c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis( "商家A",
Faker.values(),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="折线图"))
) return c def pie_rosetype() -> Pie: v = Faker.choose()
c = (
Pie()
.add( "",
[list(z) for z in zip(v, Faker.values())],
radius=["30%", "75%"],
center=["25%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="饼图-玫瑰图示例"))
) return c
page = Page(layout=Page.SimplePageLayout)
page.add(
bar_datazoom_slider(),
line_markpoint(),
pie_rosetype(),
)
page.render("page_simple_layout.html")
上图所示的图表在页面当中是不能被挪动的,在Page()组件当中我们还能够使得图表按照我们所想的那样随意的挪动
## 上面的代码都一样, page = Page(layout=Page.DraggablePageLayout)
page.add(
bar_datazoom_slider(),
line_markpoint(),
pie_rosetype(),
)
page.render("page_draggable_layout.html")
本篇文章所用到的绘制的图表都比较的简单,为了可以让读者更加容易轻松的上手来实践,本质上就是通过上面提到的几大组件将绘制好的图表给串联起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10