京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在领英近期发布的《2021年行业数据分析报告》中提出了三大新兴职场趋势:
“
☆COVID-19影响而迅速兴起的大健康/医疗职位
☆具有“数字化原生”基因的职位
☆传统行业与数字化融合发展的职位
”
在对这三大趋势的拆解中,“数据分析”作为高频词出现在了多个企业高需岗位的人才技能要求里。
不管你是没有多少经验的职场小白,还是已经深谙职场之道的老鸟,在迎接这波人力更迭的大潮时,你都需要接收到这样一个已经非常明确的讯号:数字化时代下,人人都需要有数据分析能力。
但如果你把“有数据分析能力”等同于“工具和方法玩的溜”,那么恭喜,今天这篇文章中的踩坑人说的就是你。
我了解过有不少圈子里的朋友在对数据分析有清晰认知前,就已经花了不菲的价格和大量的精力去专门学习各种工具软件,以证明自己是数字人才,有数据分析能力。
在这里,我想说:不是学会了Excel、SQL、Python、R这些工具,就能做好数据分析!
对于做业务的个人来说,数据分析能力的核心不在方法和工具,而在于数据思维;而对于一个公司来说,最重要的是能利用数据来实现企业在管理、运营、营销等重要环节中的增长。
有不少企业管理者反映,具备业务能力同时又懂数据分析的人才太稀缺了,甚至可以说绝大多数在做“假”数据分析。比如:数据分析只用在复盘环节,每次做总结时,才把数据罗列一下,看似分析了一大串,实际上对业务没有任何帮助;数据解读也只停留在表面,“分析”完数据之后,也没有用上数据思维来解决问题,最后的决策仍是“拍脑袋”。
只是有工具应用能力的你,可能就是一直在做“假”数据分析,或者说你只能算是个工具人。
86%的互联网新人在刚接触高数据技能需求的业务时,因为没有系统的数据思维能力,很容易出现以下3个局面:
1.会用工具“做图表”,但不会“分析”:在统计数据上面花费半天甚至一天的时间,最后却没有得出有效结论;
2.工具的使用无法有效满足业务需求:平时对工具的常规功能操作很熟练,但遇到量大的数据就一头懵,对如何理出“更匹配业务需求的数据”无从下手;
3.缺乏数据思维,更指不上提供策略支持:没有系统学过数据分析,不知道如何拆解数据指标,多维度衡量产品、运营现状。
以上都是大家日常数据分析经常做的“伪数据分析”,看似做了一堆数据分析,但都没有根本发挥数据分析价值,没有为个人或者企业带来收益。
当然,这样的人更不能说是“企业需要的数字人才”了。
相信想要从事数据分析的你,一定已经去招聘网站溜了一圈,稍许了解了现在企业在招聘数据分析相关岗位时都需要具备哪些能力。
认真对比后你会发现,只要是真正要找大数据分析师的企业,他们都会在岗位能力里面提及:需要该岗位从业人员拥有用数据帮企业解决某些问题的能力。
假如是一个纯小白要转行大数据分析,可能不太理解什么叫用数据帮企业解决某些问题,只要是工作过的人都知道,不管你是在哪个公司工作,公司看重的是员工解决问题的能力。
其次考虑的才是员工的工具使用情况,所以工具学习是最基础的,就相当于做平面设计需要会使用最基本的制图工具是一样的道理。
以上这种了解需求的方式是最直接容易的,也是咱们最常用的方式。但这种方式存在的弊端是:很多时候招聘网站上的JD和技能标签是由不太懂业务的HR制作的,这个岗位的核心需求点并没有很好的传达出来。
也就是说你看到的所谓的企业需求,并不是实际的业务需求。在应聘中,当你觉得自己能力完全过关而对HR反馈期待满满时,可能由于你的简历中因为没有企业认可的数据分析能力亮点而连业务筛选这关都过不了。
直播主题:《企业到底需要啥样的数字化人才?看懂行人如何上岸》
直播内容:
1.纵有千古:数字化的前世今生
2.横有八荒:数字化工作的价值聚集:数据科学
3.前途似海:数字化人才的岗位需求
4.未来可期:如何成为企业需要的数字化人才

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27