来源:Python爬虫与数据挖掘
作者:Python进阶者
大家好,我是Python进阶者。
作为非关系数据库的代表--Mongo,可以说是让人又爱又恨,让人爱的是它的便捷性,让人恨的是它的配置,实在是坑多。那么今天我们就来深入剖析它吧。
pip install pymongo from pymongo import MongoClient
1.普通登录,又称游客登陆,安全等级低
MongoClient('mongodb://localhost:27017/')
2.用户密码登陆,安全等级高
MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
这里连接到了用户名为hwzjj,密码为123456的用户。
为了安全,我们使用用户名和密码登陆,然后创建一个集合,不知道大家对Mongo创建集合还有没有印象,反正小编还有,废话不多说,先创建两个集合。
db.createCollection(name='student',option={capped:true,autoIndexId:true,size:100,max:1000}) db.createCollection(name='teacher',option={capped:true,autoIndexId:true,size:200,max:2000})
这样就创建了一student和teacher的集合了。然后我们再来显示一下所有的集合名:
show collections;
然后我们往集合里插入数据,在Mongo中是这样插入的:
可以看到我们成功插入了两条数据,接下来我们利用Python来插入数据。
1.直接使用创建好的集合插入数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw') 连接数据库
db=client['hw'] 选择数据库hw
coll=db['student'] 选择集合
res={'id':'0003','name':'任性','age':43}
first=coll.insert_one(res) 将数据插入到集合中 print(first.inserted_id) 打印插入数据的id(每个插入数据都会有)
2.自己创建集合插入数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
db.create_collection('teacher') 创建集合
res={'id':'0001','name':'boy','age':36}
last=db.student.insert_one(res) 插入数据 print(last.inserted_id) 打印id
3.插入多条数据
import random
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student'] def get(): for y in range(100000):
data={'id':y,'name':'user--'+str(y),'age':random.choice(range(100))} yield data for y in get():
coll.insert(y)
同样是插入十万个数据, 不过数据却是比Mysql慢一点,可自行测试。
注:执行插入操作时,Insert最多可插入四条同样的记录。
仍旧是先要获取集合,然后对集合中的内容进行修改。
1.更新匹配到的第一条数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.update_one({'name':'user--10'},{'$set':{'name':'用户已注销'}}) 更新匹配到的第一条数据
2.更新匹配到的所有数据
我们创建四个一样的数据,将程序执行四次即可:
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43})
可以看到生成了四个同样的记录,当然了,只能生成最多4条记录。然后我们全部将它们数据修改。
coll.update({'name':'hw'},{'$set':{'name':'用户已注册'}})
1.删除所有符合条件的数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43}) 插入数据
coll.remove({'name':'hw'}) 删除所有name 为hw的数据,注意不要以id为条件来删除,会报错
coll.delete_many({'name':'hw'}) 跟上者功能一样
2.删除所有符合条件的第一条数据
from pymongo import MongoClient
client=MongoClient('mongodb://hwzjj:123456@localhost:27017/hw')
db=client['hw']
coll=db['student']
coll.insert({'id':'111','name':'hw','age':43})
coll.delete_one({'name':'hw'}) 删除符合条件的第一条数据
1.查询符合条件的第一条数据
2.查询符合条件的所有数据
3.查找后删除
4.查找后替换
5.查找后更新
6.统计符合条件的记录数量
coll.find().count() # 记录符合条件的数量
7.符合条件的数据的排序
coll.find().sort('name', pymongo.ASCENDING) # 升序排序 DESCENDING 降序排序
8.符合条件数量中跳过
coll.find().sort('name', pymongo.ASCENDING).skip(1) # 跳过一个记录
9.限制符合条件输出数量
coll.find().sort('name', pymongo.ASCENDING).limit(2) # 输出两个符合条件的记录
10.通过Id来查找
每个插入的数据都会生成一个id,貌似被加密了,前面我们已经和它打过交道了,下面来看下它的使用。
from bson.objectid import ObjectId
find_one({'_id': ObjectId(id_name)})
1.创建索引
可以看到有两个索引,一个是Mongo自动创建的在id上的索引,另一个是刚刚创建在name上的索引。
2.获取索引
for y in coll.list_indexes(): # 获取所有索引 print(y)
3.删除索引
可以看到刚刚的索引name已经被删除了,而且只有一条数据了,那么有人就问了,为何不把_id一起删除,很抱歉,这个是删不了的。
通过本章对Pymongo的学习,相信你已经可以胜任日常一些开发了,Pymongo中还有很多值得学习的地方,值得你去推敲,在这里就不一一列举了,希望本文能带大家零基础毫无压力入门Pymongo。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03