京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:Python爬虫与数据挖掘
作者: Python进阶者
大家好,我是Python进阶者。
前言
我们在进行Python编程的时候,时常要将一些数据保存起来,其中最方便的莫过于保存在文本文件了。但是如果保存的文件太大,用文本文件就不太现实了,毕竟打开都是个问题,这个时候我们需要用到数据库。提到数据库,相信大部分人都不会陌生,今天我们要学的就是数据库中小编自认为最棒的Mysql数据库了。
为了让Python与Mysql 交互,这里我们需要用到Pymsql模块才行。
下载模块:
pip install pymysql
导入模块:
import pymysql
打开数据库连接软件 SqlYong,如图:
输入命令:
CREATE DATABASE IF NOT EXISTS people;
这样就创建了一个people 数据库。
USE people; CREATE TABLE IF NOT EXISTS student(id INT PRIMARY KEY AUTO_INCREMENT,NAME CHAR(10) UNIQUE,score INT NOT NULL,tim DATETIME)ENGINE=INNOBASE CHARSET utf8; INSERT INTO student(NAME,score,tim)VALUES('fasd',60,'2020-06-01') SELECT * FROM student;
通过上述操作便创建了一个数据表Student并向其中写入了数据,结果如下:
我们可以一行代码删除这个插入的 数据:
TRUNCATE student;
将下图中的参数依次填入初始化参数中,
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
这样就连接到了people数据库,可以看下连接成功的打印信息:
可以看到我们打印了Mysql的版本和Host信息。
1.创建游标
cur=db.cursor
2.编写插入数据表达式
sql="INSERT INTO student(NAME,score,tim)VALUES('任性的90后boy',100,now())"
3.开启游标事件
cur.begin()
4.执行数据库语句,异常判断
try:
cur.execute(sql) 执行数据库语句
except Exception as e: print(e)
db.rollback() 发生异常进行游标回滚操作 else:
db.commit() 提交数据库操作 finally:
cur.close() 关闭游标
db.close() 关闭数据库
5,执行插入操作
数据库建立好后,我们可以对它们进行插入数据的操作。
import time
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="INSERT INTO student(NAME,score,tim) VALUES ('%s',%d,'%s')" data=('HW',90,tt) try:
cur.execute(sql%data)
except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
这样就可以将数据插入进去了。我们还可以自定义插入:
import pymysql
import time tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
s=input('string:')
d=input('number:')
sql="INSERT INTO student(NAME,score,tim)VALUES('%s','%s','%s')" try:
data=(s,d,tt)
cur.execute(sql%data)
except Exception as e: print(e)
db.rollback() else:
db.commit()
finally:
cur.close()
db.close()
另外,我们也可以同时插入多条数据,只需先定义好所有的数据,然后在调用即可,这里需要用到插入多条数据的函数Executemany,在这里我插入十万条数据,并测试插入时间,步骤如下:
import pymysql
import time start=time.time()
tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin() sql="insert into student(NAME,score,tim)values(%s,%s,%s)" def get():
ab=[] for y in range(1,100000): if y>=100: data=('user-'+str(y),str(str(float('%.f'%(y%100)))),tt) else: data=('user-'+str(y),str(y),tt)
ab.append(data) return ab
try: data=get()
cur.executemany(sql,data) except Exception as e:
print(e)
db.rollback() else:
db.commit()
finally:
print('插入数据完毕')
cur.close()
db.close() end=time.time()
print('用时:',str(end-start))
6.执行更新操作
有些数据我们觉得它过时了,想更改,就要更新它的数据。
import time
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="update student set name='zjj' where score=100 " 当分数是100分的时候将名字改为zjj try:
cur.execute(sql%data) except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
7.执行删除操作
有时候一些数据如果对于我们来说没有任何作用了的话了,我们就可以将它删除了,不过这里是删除数据表中的一条记录。
import pymysql
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="delete from student where name='fasd';" 当名字等于‘fasd’的时候删除这个记录 try:
cur.execute(sql) except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
你也可以删除表中所有的数据,只需将Sql语句改为:
sql='TRUNCATE student;'
当然你也可以删除表,但是一般不建议这样做,以免误删:
DROP TABLE IF EXISTS student;
8.执行查询操作
有时候我们需要对数据库中的数据进行查询,Python也能轻松帮我们搞定。
import pymysql
import time tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="select * from student;" try:
cur.execute(sql)
res=cur.fetchall() 查询数据库中的数据 for y in res: print(y) 打印数据库中标的所有数据,以元祖的形式
except Exception as e: print(e)
db.rollback() else:
db.commit()
finally:
cur.close()
db.close()
在我们进行网络爬虫的时候,需要保存大量数据,这个时候数据库就派上用场了,可以更方便而且更快捷保存数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24