
来源:Python爬虫与数据挖掘
作者: 黄伟
在程序中我们经常可以看到有很多的加密算法,比如说MD5 sha1等,今天我们就来了解下这下加密算法的吧,在了解之前我们需要知道一个模块嘛就是hashlib,他就是目前Python一个提供字符加密的模块,它加密的字符类型为二进制编码,所以直接加密字符串会报错。
import hashlib string='任性的90后boy' #使用encode进行转换
sha1 = hashlib.sha1()
sha1.update(string.encode('utf-8'))
res = sha1.hexdigest() print("sha1采用encode转换加密结果:",res)
#使用byte转换为二进制
sha1 = hashlib.sha1()
sha1.update(bytes(string,encoding='utf-8'))
res = sha1.hexdigest() print("sha1采用byte转换的结果:",res)
可以使用下列这两种方法任意一种获取到hashlib中所有的散列算法集合:
import hashlib
a=hashlib.algorithms_available
b=hashlib.algorithms_guaranteed print(a) print(b)
下面我们挑选常用的集中算法来进行讲解。
MD5即Message-Digest Algorithm 5(信息-摘要算法5),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD5实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD5的前身有MD2、MD3和MD4。
MD5算法具有以下特点:
1、压缩性:任意长度的数据,算出的MD5值长度都是固定的。
2、容易计算:从原数据计算出MD5值很容易。
3、抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。
4、强抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。
MD5的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。
import hashlib
string='任性的90后boy' md5 = hashlib.md5()
md5.update(string.encode('utf-8'))#转码,update里的必须是字节型 res = md5.hexdigest() #返回字符型摘要信息 print(md5.digest())#返回字节型的摘要信息 print("md5加密结果:",res)
安全散列算法,SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示
import hashlib string='任性的90后boy' sha1 = hashlib.sha1()
sha1.update(string.encode('utf-8'))
res = sha1.hexdigest() print("sha1加密结果:",res)
安全散列算法
import hashlib string='任性的90后boy' sha224 = hashlib.sha224()
sha224.update(string.encode('utf-8'))
res = sha224.hexdigest() print("sha224加密结果:",res)
安全散列算法
import hashlib string='任性的90后boy' sha256 = hashlib.sha256()
sha256.update(string.encode('utf-8'))
res = sha256.hexdigest() print("sha256加密结果:",res)
安全散列算法
import hashlib string='任性的90后boy' sha384 = hashlib.sha384()
sha384.update(string.encode('utf-8'))
res = sha384.hexdigest() print("sha384加密结果:",res)
安全散列算法
import hashlib string='任性的90后boy' sha512= hashlib.sha512()
sha512.update(string.encode('utf-8'))
res = sha512.hexdigest() print("sha512加密结果:",res)
以上加密算法虽然依然非常厉害,但时候存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。
md5 = hashlib.md5()
md5.update('md5'.encode('utf-8'))
res = md5.hexdigest() print("普通加密:",res)
md51 = hashlib.md5(b'md512')
md51.update('md51'.encode('utf-8'))
res = md51.hexdigest() print("采用key加密:",res)
好了,今天就跟大家说这么多,主要给大家介绍了md5、sha1、sha224、sha256、sha384、sha512和高级加密等集中算法,简单介绍了每个算法的特点和使用方法,后续精彩敬请期待!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15