
年轻气盛时,总想拿更高的工资;步入中年时就图个稳定,一有裁员的风吹草动便紧张个半死,这是很多普通人的职场生涯写照。
无论你处于哪个阶段,希望能明白一个道理,决定收入和安稳的因素,并非无怨无悔的勤奋加班,也不是日积月累的丰富经验。
而是,你所从事的岗位是否具备稀缺性,在给企业创造价值的同时,你是否是不可替代的,你的能力是否“越老越吃香”。
行业越朝阳,能力越稀缺,越容易拿到高工资,也不会轻而易举在企业困难期被裁掉,即便被裁,找新工作也不会太难。
什么是人才稀缺性?通俗讲,指人才需求缺口大,但供不应求,给大家举些例子。
栗子一:理性数据分析,辅助实战经验,已成各企业高层主流的决策依据。企业对业务及数据分析能力过硬的人才需求越来越大,缺口达150万。
然而,目前的高校尚未向社会输出专门的数据分析人才。故而,以实操性为主导的数据分析具备稀缺性。
栗子二:与2015年相比,数字化人才的整体需求量暴增了11倍,除高尖端企业对这类求职者需求量大之外,传统金融行业亦迫切需要这类新鲜血液的注入,所以这类人才也拥有稀缺性。
人们往往认为稀缺是因岗位难度大,所以才难以找到替代的人,工资自然也高,这种想法误导了很多人。
其实,想“成为不可轻易替代的人”并没有那么难,就看努力的方向是否正确。小编总结了几点,希望能帮到大家。
●成为领域专家●
想拥有安全稳定的职场发展,成为某个领域的专家是不二之选,只要你将专业技能吃透,在这个领域的不可替代性就越高。
专业技能值越高,抗打能力就越强。这个方向需要持之以恒的稳定性,正如数据分析师一样,从事年限越长,薪资才会水涨船高。
数据分析师不同工作时长的薪资
●不给自己设限●
在职业生涯中,一定不要给自己设限,要充分了解自己的天赋与优势,选择适合的岗位或项目从事,并不断提升自己的综合能力。
获得更多机会,更多元化发展,从事一些工作范围外,对他人或企业有价值的事情,从而成长为不可替代的骨干。
●学会营销自己●
职场上也要学会自我营销,要形成这样的意识“你不仅仅是企业员工,更是你自己。”
原腾讯副总裁吴军通过在公司内部博客上,写一系列数学文章来建立个人知名度,为后期出版《数学之美》预备了素材。
职场精英可在干好工作的同时营销自己,一旦形成了个人品牌效应,不可替代性会大幅度增强。
●学习跨界技能●
当你成某领域专家时,不妨打破思维,学习些其他领域的实用技能。如:从事市场、行政、财务等岗位的职场人,会选择数据分析作为自己的扩展技能。
将数据分析思维运用于工作中,尤其是特别流行的Python办公自动化,让自己从繁琐的工作中解放出来,有更多的时间去思考更有意义的事。
稀缺岗位课程推荐
为传授符合企业标准的实用数据分析技术,CDA从理论知识到实际应用,结合金融、电商、互联网等热门行业的精选案例,帮助学员学以致用,成为企业抢手人才,占先机。
同时,课程拥有强大师资阵容,由至少10位以上相关领域的专家进行教授,特别适合每一个你。
不仅如此,就业班还为成功毕业的学员,开通了就业直通车,为其推荐相关工作单位。
同时,报名参加CDA数据分析师培训课程的学员或企业,还可申请政府补贴,每人每年合计最高可达1万元,具体的补贴标准请详细咨询哦!
立刻咨询课程
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05