京公网安备 11010802034615号
经营许可证编号:京B2-20210330
年轻气盛时,总想拿更高的工资;步入中年时就图个稳定,一有裁员的风吹草动便紧张个半死,这是很多普通人的职场生涯写照。
无论你处于哪个阶段,希望能明白一个道理,决定收入和安稳的因素,并非无怨无悔的勤奋加班,也不是日积月累的丰富经验。
而是,你所从事的岗位是否具备稀缺性,在给企业创造价值的同时,你是否是不可替代的,你的能力是否“越老越吃香”。
行业越朝阳,能力越稀缺,越容易拿到高工资,也不会轻而易举在企业困难期被裁掉,即便被裁,找新工作也不会太难。
什么是人才稀缺性?通俗讲,指人才需求缺口大,但供不应求,给大家举些例子。
栗子一:理性数据分析,辅助实战经验,已成各企业高层主流的决策依据。企业对业务及数据分析能力过硬的人才需求越来越大,缺口达150万。
然而,目前的高校尚未向社会输出专门的数据分析人才。故而,以实操性为主导的数据分析具备稀缺性。
栗子二:与2015年相比,数字化人才的整体需求量暴增了11倍,除高尖端企业对这类求职者需求量大之外,传统金融行业亦迫切需要这类新鲜血液的注入,所以这类人才也拥有稀缺性。
人们往往认为稀缺是因岗位难度大,所以才难以找到替代的人,工资自然也高,这种想法误导了很多人。
其实,想“成为不可轻易替代的人”并没有那么难,就看努力的方向是否正确。小编总结了几点,希望能帮到大家。
●成为领域专家●
想拥有安全稳定的职场发展,成为某个领域的专家是不二之选,只要你将专业技能吃透,在这个领域的不可替代性就越高。
专业技能值越高,抗打能力就越强。这个方向需要持之以恒的稳定性,正如数据分析师一样,从事年限越长,薪资才会水涨船高。
数据分析师不同工作时长的薪资
●不给自己设限●
在职业生涯中,一定不要给自己设限,要充分了解自己的天赋与优势,选择适合的岗位或项目从事,并不断提升自己的综合能力。
获得更多机会,更多元化发展,从事一些工作范围外,对他人或企业有价值的事情,从而成长为不可替代的骨干。
●学会营销自己●
职场上也要学会自我营销,要形成这样的意识“你不仅仅是企业员工,更是你自己。”
原腾讯副总裁吴军通过在公司内部博客上,写一系列数学文章来建立个人知名度,为后期出版《数学之美》预备了素材。
职场精英可在干好工作的同时营销自己,一旦形成了个人品牌效应,不可替代性会大幅度增强。
●学习跨界技能●
当你成某领域专家时,不妨打破思维,学习些其他领域的实用技能。如:从事市场、行政、财务等岗位的职场人,会选择数据分析作为自己的扩展技能。
将数据分析思维运用于工作中,尤其是特别流行的Python办公自动化,让自己从繁琐的工作中解放出来,有更多的时间去思考更有意义的事。
稀缺岗位课程推荐
为传授符合企业标准的实用数据分析技术,CDA从理论知识到实际应用,结合金融、电商、互联网等热门行业的精选案例,帮助学员学以致用,成为企业抢手人才,占先机。
同时,课程拥有强大师资阵容,由至少10位以上相关领域的专家进行教授,特别适合每一个你。
不仅如此,就业班还为成功毕业的学员,开通了就业直通车,为其推荐相关工作单位。
同时,报名参加CDA数据分析师培训课程的学员或企业,还可申请政府补贴,每人每年合计最高可达1万元,具体的补贴标准请详细咨询哦!
立刻咨询课程
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23