
来源:早起Python
作者:陈熹
大家好,又来到Python办公自动化专题。
在之前的系列文章中,我们已经讲解了如何利用Python读取、收发、管理邮件。本文将进一步分享如何用Python制作一个邮件自动回复机器人。
比如当发送标题为“来句诗”时,能够自动返回一句诗;当发送邮件标题为“xx(城市)天气”如“广州天气”时,能够返回所需城市的天气情况等等,更多功能可以自己定义,主要将涉及
“imbox 读取及解析附件yagmail 发送邮件邮件与爬虫的结合”
和之前的文章类似,我们首先整理下思路,然后逐个解决,简单来说这个需求可以分为下面的步骤:
“定时读取未读邮件,如有则获取标题及发件人如果标题为“来句诗”,则从“今日诗词”的网站上获取一句诗;如果标题为“xx(城市)天气”则从在线天气预报网站中获取相应城市的天气情况和温度将获取的信息组合成新邮件发送会指定收件人将未读邮件标为已读”
基本逻辑很简单,需要用到的知识点我们之前的文章中都有提过,可以直接尝试完成这个案例。两个子需求爬取的网站分别是 今日诗词:https://www.jinrishici.com 和 中国天气网:http://wthrcdn.etouch.cn/weather_mini?city={城市}
邮箱方面,之前我们讲过qq邮箱、网易邮箱、这次再换个邮箱(88邮箱),首先通过 imbox 库解析邮件,可以通过 kering 库获取预先存在本地的系统密钥(本文以 88 邮箱为例):
import keyring from imbox import Imbox
password = keyring.get_password('88mail', 'test@88.com')with Imbox('imap.88.com',
'test@88.com', password, ssl=True) as imbox:
unread_inbox_messages = imbox.messages(unread = True) # 获取未读邮件 pass
根据需求自然而然可以想到是反复获取未读邮件,解析其标题观察是否符合条件,符合相应条件则执行相应的函数,并将函数返回的内容组装成新的邮件。最后无论是否符合要求都将其标记为已读。
当然,如果要持续运行就还需要将核心代码包装成函数,并放在循环体内部。循环可以间隔10分钟。代码如下所示:
import keyring from imbox import Imboximport time
password = keyring.get_password('88mail', 'test@88.com')def get_verse():
passdef get_weather(): passdef send_mail(email, results): passdef main():
with Imbox('imap.88.com',
'test@88.com', password, ssl=True) as imbox:
unread_inbox_messages = imbox.messages(unread = True) # 获取未读邮件
for uid, message in unread_inbox_messages :
title = message.subject
email = message.sent_from[0]['email']
results = '' if title == '来句诗':
results = get_verse()
if title[-2:] == '天气':
results = get_weather(title[:-2])
if results:
send_mail(email, results)
imbox.mark_seen(uid)
while True:
main()
time.sleep(600)
发送邮件可以利用之前介绍的 yagmail 库,核心代码 mail.send 接收收件人邮箱、邮件标题、邮件内容三个参数:
import yagmail# 用服务器、用户名、密码实例化邮件mail = yagmail.SMTP(user='xxx@88.com', password =
password, host='smtp.88.com') # 待发送的内容contents = ['第一段内容', '第二段内容']#
发送邮件mail.send('收件人邮箱', '邮件标题', contents)
由于 send_mail 函数接受爬虫返回的 results 作为内容,也获取了 imbox 解析后得到的特定发件人邮箱,因此可以写成如下形式:
import yagmaildef send_mail(email, results):
mail = yagmail.SMTP(user='test@88.com', password=password, host='smtp.88.com')
contents = [results]
mail.send(email, '【自动回复】您要的信息见正文', contents)
问题只剩下如何获取每日一句以及如何获取指定城市天气了,首先看一下每日一句的网站特点(实际上这个网站有 API 接口,读者可以自行尝试):
先试试直接返回网站内容:
import requests
url = 'https://www.jinrishici.com/'response = requests.get(url).textprint(response)
可以返回内容,没有特别的反爬措施,但返回的正文是乱码,同时我们也注意到 utf-8 编码,因此直接修改编码即可:
import requests
response = requests.get(url)
response.encoding = "UTF-8"print(response.text)
编码问题解决以后就可以利用 xpath 解析获取诗句了:
import requests
from lxml import html
url = 'https://www.jinrishici.com/'response = requests.get(url)
response.encoding = "UTF-8"selector = html.fromstring(response.text)
verse = selector.xpath('//*[@id="sentence"]/text()')print(verse)
有趣的是,并没有按意愿返回诗句,原因是网页中的诗句是以Ajax动态加载的,而非静态出现在网页中。
重新分析网页 XHR 即可获取真正的访问连接 https://v2.jinrishici.com/one.json?client=browser-sdk/1.2&X-User-Token=xxxxxx,Token见下图:
分析好原因后代码反而更加简单了:
import requests
url = 'https://v2.jinrishici.com/one.json?client=browser-sdk/1.2&X-User-Token=xxxxxx'
response = requests.get(url)
print(response.json()['data']['content'])
返回的诗句直接就可以作为函数结果返回,因此代码又可以写成:
import requests
def get_verse():
url = 'https://v2.jinrishici.com/one.json?client=browser-sdk/1.2&X-User-Token=xxxxxx'
response = requests.get(url)
return f'您要的每日诗句为:{response.json()["data"]["content"]}'
获取天气可以使用官方提供的 API 了,以广州为例:
import requests
url = 'http://wthrcdn.etouch.cn/weather_mini?city=广州'response = requests.get(url)print(response.json())
根据返回的 json 数据很容易获取今日的天气情况和最高最低气温,组合成函数效果如下:
def get_weather(city):
url = f'http://wthrcdn.etouch.cn/weather_mini?city={city}'
response = requests.get(url).json()
results = response['data']['forecast'][0]
return f'{city}今天的天气情况为{results["type"]},{results["high"][:-1]}度,{results["low"][:-1]}度'
至此,代码部分就写完了。我们的邮箱自动回复机器人也就拥有了两个简单的功能,当然你可以结合自己的需求实现更多有意思的功能!最后附上完整代码供大家学习与交流
import keyring
import yagmail
from imbox import Imbox
import requests
import time
password = keyring.get_password('88mail', 'test@88.com')
def get_verse():
url = 'https://v2.jinrishici.com/one.json?client=browser-sdk/1.2&X-User-Token=xxxxxx'
response = requests.get(url)
return f'您要的每日诗句为:{response.json()["data"]["content"]}'
def get_weather(city):
url = f'http://wthrcdn.etouch.cn/weather_mini?city={city}'
response = requests.get(url).json()
results = response['data']['forecast'][0]
return f'{city}今天的天气情况为{results["type"]},{results["high"][:-1]}度,{results["low"][:-1]}度'
def send_mail(email, results):
mail = yagmail.SMTP(user='test@88.com', password=password, host='smtp.88.com')
contents = [results]
mail.send(email, '【自动回复】您要的信息见正文', contents)
def main():
with Imbox('imap.88.com', 'test@88.com', password, ssl=True) as imbox:
unread_inbox_messages = imbox.messages(unread=True) # 获取未读邮件
for uid, message in unread_inbox_messages:
title = message.subject
email = message.sent_from[0]['email']
results = ''
if title == '来句诗':
results = get_verse()
if title[-2:] == '天气':
results = get_weather(title[:-2])
if results:
send_mail(email, results)
imbox.mark_seen(uid)
while True:
main()
time.sleep(600)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07