
来源:丁点帮你
作者:丁点helper
在前面的文章中,我们跟大家一起学习了R中的数据导入、基本的操作方法、描述性统计等内容。
这其中的很多操作都是针对格式和内容都完好的数据而言的。但在实际工作中,我们收集到的数据往往不那么完美,需要先进行一番清理。今天开始,我们来学习如何将杂乱的数据整理得井井有条。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
示例数据是某高校教师对本班学生的调查结果,为方便练习,大家可先下载:
文件名:survey.csv
链接: https://pan.baidu.com/s/1XZgdyb59wPyWy6wp_hmoQw
密码: 5lyw
survey <- read.csv("//Users//Desktop//titanic.csv", header = TRUE)
用下面的语句来了解一下这个数据:
#数据有多少行多少列dim(survey)[1] 238 17#获取数据中的变量名称 names(survey) [1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" [9] "Exercise" "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" [17] "Pulse"
可以知道,这项调查共涉及到238名同学,调查项目有17项。
数据清理第一步:有无缺失
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
今天这篇文章只介绍如何对数据的完整性进行判断。
在survey这个数据库的238条记录中,如果某条记录中的17个变量都获取到了信息,不存在漏填的情况,那么认为这条记录是完整的。
1.用complete.cases()这个函数得到数据中的每条记录是否完整,其结果是一个逻辑型变量。
如下面的结果,survey这个数据的第一条记录(第一行)是完整的,而第232条记录是不完整的。
complete.cases(survey) [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [20] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [39] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [58] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [77] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE [96] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[115] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[134] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[153] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[172] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE[191] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[210] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[229] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
2. 那么有多少条记录是完整的呢?根据下面的结果,答案是232条。
下面的语句中,which()的作用是得到逻辑型变量complete.cases(survey)中值为TRUE的顺序号。大家可以自行运行一下which(complete.cases(survey))这个语句,看看结果是什么。
所以最后用length(),可以得到共有多少条记录的完整性检验结果为TRUE。
length(which(complete.cases(survey)))[1] 232
3. 仅保留所有完整的记录,并生成一个新数据集。有两种方法:
# 仅保留complete.cases(survey) = TRUE的记录 survey_com <- survey[complete.cases(survey),] # 去掉有缺失情况的记录survey_com <- na.omit(survey)
4. 我们也可以看看有缺失的记录是哪些,来进一步考察数据的缺失规律。
survey_miss <- survey[!complete.cases(survey),] survey_miss
结果如下图:
小结
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
面对一个数据,除了了解数据的行、列、变量等,每条记录的完整性是我们首先需要关注的问题之一。因为缺失记录和未缺失记录之间的差异很可能会对数据分析结果的准确性有直接影响。
通过本文介绍的4个方面来判断数据的缺失情况、定位完整数据和缺失数据,可以对所得样本的质量进行估计,也可为数据填补做好准备。
关于缺失数据的处理方法,大家可以参考这篇文章。
如果你也有待处理的数据,那么快用今天学的方法检验一下你的数据是否完整吧。
只有从根本上了解自己的数据,把每一个缺失值处理好,才可能做出逻辑严密、有说服力的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10