京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
设想一下,你如何开发下面这个游戏:
很难想象,用简单的字符串,int, list等数据类型就能表达和开发出这么复杂的游戏(实际上是可以的,只是很麻烦)。
更好的做法是使用面向对象的技术。这个游戏无非就是一个个对象互相打打杀杀!
编程是对现实世界的模拟,我们先来看看面向对象的几个核心概念:
在早期的编程语言中,比如C语言中,是没有面向对象的概念的,所有的程序,不管多么复杂,都是用数字,字符串等来表达的。那时候我们称为面向过程编程。
面向过程编程:Procedure Oriented Programming 是一种以过程和任务为中心的编程思想。通过一系列具体的步骤操作相关的数据,实现软件功能。
面向对象编程
Object Oriented Programming 是一种以对象为基础的编程思想。把数据和操作封装到对象中,通过对象一系列的交互,实现软件功能。
下面我用一个小的例子带你理解面向对象。
假设有两条狗,他们分别有自己的名字,身高,血量和攻击力。我们要模拟一条狗攻击了另外一条狗。
#表示狗的属性 dog1_name = '大黄'
dog1_height = 0.7
dog1_blood = 1.0
dog1_power = 0.1
dog2_name = '二黑'
dog2_height = 0.7
dog2_blood = 1.0
dog2_power = 0.2 #dog1攻击dog2 print('dog1 attacking dog2')
dog2_blood = dog2_blood - dog1_power #dog2攻击dog1 print('dog2 attacking dog1')
dog1_blood = dog1_blood - dog2_power
这显然不好,如果有100条狗互相乱咬呢?
我们来看看面向对象的写法:
#类是一个模板 class Dog: #构造方法 def __init__(self, name, height, blood, power):
self.name = name
self.height = height
self.blood = blood
self.power = power
def attack(self, dog2):
dog2.blood = dog2.blood - self.power
d1 = Dog('大黄', 0.7, 10, 3) #创建第1个实例 d2 = Dog('二黑', 0.5, 10, 4) #创建第2个实例 print(f'攻击前:{d2.blood}')
d1.attack(d2)
print(f'攻击后:{d2.blood}')
这虽然看起来代码比上面还长,但是代码很自然,更容易懂,更有“人性”。
如果我们要创建100个Dog,也很容易。把这100个Dog放到一个列表中也很方便。
下面我们来庖丁解牛,从零开始学习面向对象的核心概念。
我们再回到前面的例子,从零开始,理解类的核心概念。
#最简单的类 class Dog: pass
这是一个最简单的类,它里面什么都没有,就像一个空白的信封。注意类的定义以class开头,后面是类的名字,类名一般用大写。
虽然它什么都没有,但我们仍然可以用它来创建实例。
d1 = Dog()
d2 = Dog() print(id(d1)) print(id(d2))
创建实例通过使用类名加括号,有的类需要传入参数。通过下面的打印可以看出d1和d2的内存地址不同,他们确实是不同的实例,在内存里有自己独立的房间。
Python是一个动态语言,我们可以给类动态的添加属性:
d1.name = '旺财' print(d1.name) print(d2.name) #报错,因为d2没有name属性
正常情况下类不是空的,我们要求创建实例的时候就必须填写必要的信息,这样才是一个有效的实例。
我们创建实例的过程,会调用了一个叫做__init__的方法。前面的Dog中没有init方法,它就给我们创建了一个空的对象出来。实际上Python调用了Object类的init方法,这个方法不需要传任何参数,也不做任何事情。
现在我们给Dog类加上__init__方法:
#类是一个模板 class Dog: #构造方法 def __init__(self, name, height, blood, power):
self.name = name
self.height = height
self.blood = blood
self.power = power
这时候如果再去创建Dog的实例,而不传入参数就会报错了:
d1 = Dog() #报错,必须要传入指定的参数
init函数的第一个参数永远是self,表示当前对象,表示自己。后面的参数看我们自己的需要,我们希望Dog类有name, height, blood和power等几个属性,所以我们就加了这几个参数。
现在来正常的创建两个实例:
d1 = Dog('大黄', 0.7, 10, 3) #创建第1个实例 d2 = Dog('二黑', 0.5, 10, 4) #创建第2个实例
创建实例的时候,不需要传入第一个self参数,Python会自动传入。我们只要传入self后面的几个参数就行。注意参数的顺序。
这里需要认识一下self:
并不是所有的属性都一定要在构造方法中传入,比如我们规定:blood在创建的时候默认都是10,也就是满血。
那么就没必要在init中传入这个参数了。我们可以在init函数中设置默认的值为10。
class Dog: #构造方法 def __init__(self, name, height, power):
self.name = name
self.height = height
self.blood = 10 self.power = power
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04