
SPSS分析技术:重复测量方差分析
下面介绍在经济学、医学和心理学领域常用的重复测量方差分析。
重复测量方差分析原理
重复测量是指测试对象被处理后,对该测试对象的某个指标在不同时间点上多次测量,获得的数据就称为重复测量数据。重复测量方差分析不仅能够完成其它方差分析的均值的差异显著性比较,还能够考察测量指标是否会随着测量次数的增加而改变,或者随着时间的推移而改变。
我们以两因素方差分析的数据整理表格为例进行说明,如下图所示,如果非重复测量时,每个因变量数据单元格内的数据个数为n个,现在再5个时间点重复测量这些数据,那么每个单元格内的数据就变为5n个,这些数据不仅能够完成原来的两因素方差分析的目标,还能够额外考量数据是否会随着时间的推移而改变。
案例分析
麻醉能够使病人在手术过程中免于忍受疼痛的折磨,但是麻醉会对病人的血压造成影响,甚至出现病人麻醉死亡的事故。某医院麻醉科新设计了三种麻醉方法,现已进入临床测试阶段。医院选取了15个需要进行同样手术的病人,随机分成3组,在手术过程中分别实施三种麻烦方法,在麻醉后,选取5个时间点测量他们收缩压的变化情况,分别记为收缩压1~收缩压5,用重复测量方差分析对数据进行分析。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析思路
如果没有进行重复测量的话,我们可以直接利用单因素方差分析来考察三种麻醉方法的效果,但是本案例进行的是重复性测量,所以应该进行重复性测量方差分析,不仅可以提高对于三种麻醉方法的分析效果,还可以考量时间是否会对收缩压起作用。
分析步骤
1、选择【分析】-【一般线性模型】-【重复测量】,打开重复测量定义因子对话框,如下图所示,将被测内因子名称改为“收缩压”,级别数为5,点击添加按钮;在测量名称中填写“血压”,点击添加按钮,点击定义。
2、在跳出的重复测量对话框中,进行如下操作,将收缩压1~5添加进主体内部变量;将诱导方法添加进因子列表。
3、点击模型按钮,进行如下操作,点击定制,将主体内的收缩压选入主体内模型,将主体间的方法选入主体间模型。构建项选择交互,平方和选择三型。
4、点击事后检验按钮,进行如下操作,将因子中的方法选入事后检验框中,假定方差齐性选择LSD
5、点击选项按钮,在跳出的对话框中进行如下所示。
6、点击确定按钮,输出结果。
结果解释
1、球形检验结果
由上表可知,收缩压的主体内效应检验显著性P为0.178,大于0.05的临界值,满足球形检验。因此在主体内效应检验表中查看“假设为球形”行数据。若球形检验结果的P小于0.05,不能满足球形假设,就要查看下边的三行数据来判断。
2、主体内效应检验;
从表中看出,收缩压和收缩压*方法的效应检验F值显著性均为0.000,达到非常显著。它们的Eta平方分别解释因变量的89.9%和76.1%。这表明不仅收缩压之间差异显著,而且诱导方法的不同造成的收缩压均值差异也显著,同时,不同诱导方法之间有统计学的差异。
3、事后多重检验
从事后多重检验看出:诱导方法1和诱导方法2相比,显著性水平P值为0.08,未达到显著;诱导方法1和诱导方法3相比,显著性P值为0.05,达到显著程度;而诱导方法2与诱导方法3比较,p值为0.164,未达到显著,可知诱导方法1效果最为显著。
4、折线图
从边际平均值的折线图也可以看出,麻醉方法1对于收缩压的影响效果最显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15