
英文:Ordered dict surprises
(https://nedbatchelder.com//blog/202010/ordered_dict_surprises.html)
作者:Ned Batchelder
译者:豌豆花下猫
来源:Python猫
从python 3.6 开始,常规的字典会记住其插入的顺序:就是说,当遍历字典时,你获得字典中元素的顺序跟它们插入时的顺序相同。
在 3.6 之前,字典是无序的:遍历顺序是随机的。
关于有序字典,这里有两件令人意外的事情。
1、你无法获得第一个元素
由于字典中的元素具有特定的顺序,因此获取第一个(或第 N 个)元素应该很容易,对吧?
不对!没办法直接做到。
你可能会认为 d[0] 就是第一个元素,但并不是,它只是键为 0 的值,有可能是添加到字典的最后一个元素。
获得第 N 个元素的唯一方法是遍历字典,直到取得第 N 个元素。不能根据有序索引来作随机访问。
这是一处列表胜过字典的地方。获取列表的第 N 个元素是 O(1) 操作。获取字典的第 N 个元素(即使已排序)是 O(N) 操作。
2、OrderedDict 有点不同
由于现在的字典是有序的,collections.OrderedDict 就没用了,对吧?
(译注:3.6 版本前的 dict 是无序的,但标准库里提供了一个有序字典 OrderedDict。现在 dict 变有序了,那 OrderedDict 似乎是多余了?)
好像是。但是它不会被删除,因为那样会破坏正在使用它的代码,并且它还拥有一些常规字典没有的方法。
另外,它们在行为上也有细微的差别。在比较是否相等时,常规字典不会考虑顺序,但 OrderedDict 会:
>>> d1 = {"a": 1, "b": 2} >>> d2 = {"b": 2, "a": 1} >>> d1 == d2 True >>> list(d1) ['a', 'b'] >>> list(d2) ['b', 'a'] >>> from collections import OrderedDict >>> od1 = OrderedDict([("a", 1), ("b", 2)]) >>> od2 = OrderedDict([("b", 2), ("a", 1)]) >>> od1 == od2 False >>> list(od1) ['a', 'b'] >>> list(od2) ['b', 'a'] >>>
(译文完)
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22