京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
大家好,又到了python办公自动化专题。要说在工作中最让人头疼的就是用同样的方式处理一堆文件夹中文件,这并不难,但就是繁。所以在遇到机械式的操作时一定要记得使用Python来合理偷懒!今天我将以处理微博热搜数据来示例如何使用Python批量处理文件夹中的文件,主要将涉及:
首先来说明一下需要完成的任务,下面是我们的文件夹结构
因为微博历史热搜是没有办法去爬的,所以只能写一个爬虫每天定时爬取热搜并保存,所以在我当时分析数据时使用的就是上图展示的数据,每天的数据以套娃形式被保存在三级目录下,并且热搜是以markdown文件存储的,打开是这样
而我要做的就是将这三个月的微博热搜数据处理成这样
这困难吗,手动的话无非是依次点三下进入每天的数据文件夹再打开md文件手动复制粘贴进Excel,不就几万条数据,大不了一天不吃饭也能搞定!现在我们来看看如何用Python光速处理。
Python实现
在操作之前我们来思考一下如何使用Python实现,其实和手动的过程类似:先读取全部文件,再对每一天的数据处理、保存。所以第一步就是将我们需要的全部文件路径提取出来,首先导入相关库
import pandas as pd import os import glob from pathlib import Path
读取全部文件名的方法有很多比如使用OS模块
但是由于我们是多层文件夹,使用OS模块只能一层一层读取,要写多个循环从而效率不高,所以我们告别os.path使用Pathlib来操作,三行代码就能搞定,看注释
from pathlib import Path
p = Path("/Users/liuhuanshuo/Desktop/热搜数据/") #初始化构造Path对象
FileList=list(p.glob("**/*.md")) #得到所有的markdown文件
来看下结果
成功读取了热搜数据下多层文件夹中的全部md文件!但是新的问题来了,每天有两条热搜汇总,一个11点一个23点,考虑到会有重合数据所以我们在处理之前先进行去重,而这就简单了,不管使用正则表达式还是按照奇偶位置提取都行,这里我是用lambda表达式一行代码搞定。
filelist = list(filter(lambda x: str(x).find("23点") >= 0, FileList))
现在我们每天就只剩下23点的热搜数据,虽然是markdown文件,但是Python依旧能够轻松处理,我们打开其中一个来看看。
打开方式和其他文件类似使用with语句,返回一个list,但是这个list并不能直接为我们所用,第一个元素包含时间,后面每天的热搜和热度也不是直接存储,含有markdown语法中的一些没用的符号和换行符,而清洗这些数据就是常规操作了,使用下面的代码即可,主要就是使用正则表达式,看注释:
with open(file) as f:
lines = f.readlines()
lines = [i.strip() for i in lines] #去除空字符
data = list(filter(None, lines))
del data[0]
data = data[0:100]
date = re.findall('年(.+)2',str(file))[0]
content = data[::2] #奇偶分割
rank = data[1::2]
#提取内容与排名
for i in range(len(content)):
content[i] = re.findall('、(.+)',content[i])[0]
for i in range(len(rank)):
rank[i] = re.findall(' (.+)',rank[i])[0]
最后只需要写一个循环遍历每一天的文件并进行清洗,再创建一个DataFrame用于存储每天的数据即可。
可以看到,并没有使用太复杂的代码就成功实现了我们的需求!
结束语
以上就是使用Python再一次解放双手并成功偷懒的案例,可能读取Markdown文件在你的日常工作中并用不到,但是通过本案例希望你能学会如何批量处理文件夹,批量读取清洗数据。更重要的是在你的工作学习中,遇到需要重复操作的任务时,是否能够想起使用Python来自动化解决!拜拜,我们下个案例见~
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11