
作者:丁点helper
来源:丁点帮你
上篇文章利用泰坦尼克号沉船事件中乘客的存活情况介绍了描述性数据分析,计算了不同舱位乘客的幸存率,今天我们来看看如何用图像来直观表达。
我们先来简单复习一下titanic.csv的内容。
# 导入数据 titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE) names(titanic) # 查看titanic中的变量名 head(titanic) # 查看titanic前6行
上篇文章计算的不同舱位乘客的死亡与幸存人数如下:
table(titanic$survived,titanic$pclass) 1st 2nd 3rd died 123 158 528 survived 200 119 181
不同舱位生存率:
survpct=paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") survpct [1] "61.92%" "42.96%" "25.53%"
如果我们想直观地描述不同舱位乘客的幸存率,可以用下面的做法:
绘制柱状图
barplot(table(titanic$survived,titanic$pclass))
barplot()是绘制柱状图的函数,该函数括号中的命令为绘图所需的数据,就是前面我们计算过的不同舱位死亡及幸存者人数。
柱状图的颜色也可调整,下面的代码中,col是更改柱状图颜色的命令:
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"))
每个舱位死亡与幸存人数柱子的排列方式也可调整,beside为改变柱状图排列方式的命令;beside=T意为两个柱子并排,beside=F意为两个柱子上下叠放。
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"), beside=T)
至此,我们已经可以将数字转变为直观的图像了,但是黄色和蓝色的柱子分别代表幸存者还是死亡者呢?此外,图像的标题等重要信息也未标示出来,图像的可读性还需要通过下面的步骤来提升:
设置图例、标题、坐标轴标签等
做法比较简单,在上面代码的基础上,增加一些命令即可:
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"), beside=T, legend=T, args.legend=list(x="topleft"), main="Survival (Pct) by Passenger Class", xlab="Class",ylab="Count", ylim=c(0,600))
legend为设置图例的命令;args.legend为设置图例位置的命令;
main为设置图标题的命令;
xlab、ylab分别为设置x轴和y轴名称的命令;
ylim为设置y轴范围的命令。
从这个图像可以清晰地看出,一等舱的幸存者人数为三个舱位中最多的,而三等舱的死亡者人数远高于其他两个舱位。但是这个图像还缺少一个信息,就是各舱位的存活率,我们可以在每个舱位的柱子上面标记一下:
text(c(2,5,8),c(250,250,570),survpct, cex=1.2)
text()为给图片中增加文字的函数。
其中前两个命令为文字的位置信息,第一个命令为文字设置x轴方向的位置信息,c(2,5,8)表示将文字分别放置在x取值为2,5,8处。
第二个命令为文字增加y轴方向的位置信息,c(250,250,570)表示将其分别放置在y取值为250,250,570处。
第三个命令为文字的具体内容,survpct是之前程序的运行结果,为一、二、三等舱乘客的幸存率。
第四个命令cex为文字字号,默认值为1,此处设置为1.2,意为比默认字号大20%。
以上代码默认标题、x轴、y轴的文字均为英文,但有时我们也需要将其设置为中文,此时只需在上面这段代码中增加一个『字体 (family)』命令:将图片中的文字设置成中文。
barplot(table(titanic$survived,titanic$pclass), col=c("red","blue"), beside=T, legend=T, args.legend=list(x="topleft"), main="不同舱位乘客幸存数(率)", xlab="舱位",ylab="人数",family = "SimHei", ylim=c(0,600))
family命令需要赋值字体的英文名称,本文将字体设置为"SimHei",即黑体。
此处还可设置其他字体,以下链接中总结了常见中文字体的英文名,大家可根据自己的需要选择。
部分字体中英文名称,资料来源于下面的链接
http://guangzheng.name/2017/12/18/%E5%A6%82%E4%BD%95%E8%B0%83%E6%95%B4R%E8%AF%AD%E8%A8%80%E7%BB%98%E5%9B%BE%E7%9A%84%E5%AD%97%E4%BD%93/
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23