京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国庆长假出游热即将来临之际,中国文化和旅游部发布新规,10月1日起,在线旅游经营者不得滥用大数据分析等技术手段,侵犯旅游者合法权益。
一直困恼国内消费者的“大数据杀熟”事件,终于迎来曙光,虽然该规定目前只适用在旅游行业中,但却是一个很好的开头。
“大数据杀熟”究竟是啥
2018年天猫、京东等平台被指责有“大数据杀熟”嫌疑,即:同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。
随着大数据分析技术蓬勃发展,经营者运用已有的大量数据,如:消费偏好、频率、习惯、收入等,分析客户购买力、对商品或服务需求的程度……
依据分析结果,将同一商品或服务以不同价格卖给不同的消费者,从而获得更大的利益。
互联网“大数据杀熟”起源
互联网“大数据杀熟”鼻祖是亚马逊,2000年,亚马逊启动了著名的差别定价实验,将部分DVD碟片对新顾客报价22.74美元,而对感兴趣的老顾客报价26.24美元。
这种销售方式产生了极佳的效果,但后来被老顾客发现,最终以亚马逊赔钱并道歉告终。
“大数据杀熟”常见形式
▷ 根据用户使用设备不同而差别定价,如:苹果与安卓用户定价不同;
▷ 根据用户消费场所不同而差别定价,如:给距离商场远的用户定价更高;
▷ 根据用户消费频率不同而差别定价,如:给消费频率高的用户定价更高。
怎样避开“大数据杀熟”
▶ 网购时,偶尔换新账号,查看价格变化情况;
▶ 货比三家,提防商户隐藏信息,多了解商品;
▶ 切勿轻易被商户锁定、被套牢。
“大数据杀熟”后话
——给卖家的话
大数据分析是为给消费者提供更好的服务,差异化定价应遵守底线,保证用户的知情权,以防危机品牌的名誉,造成忠实用户的流失。
——给买家的话
没有人能避开大数据,根据消费习惯、喜好等,在线平台会给每位消费者贴上千个标签。
不想被大数据“套牢”,就要“知己知彼”,我们要跟上大数据时代的步伐,就一定要注意培养自己的大数据分析思维。
CDA明星导师李奇老师表示,大数据分析是连接数据与人类认知之间的桥梁。
大数据分析是什么?
百度百科的定义,大数据分析,是为了提取有用信息和形成结论,而对数据加以详细研究和概括总结的过程。
简而言之,就是将数据(包括文本、音乐、文字、数字等)转化为知识、智慧的方法,如:朱朝阳日记中的内容也是数据。
拥有数据分析思维的人,想不发光发亮都很难。因此,随着大数据时代到来,以这种思维为基础形成了一个朝阳产业,倍受社会各界人士的青睐。
现今,各大企业对数据分析能力过硬的人才,需求量也越来越大,供不应求的市场导向,让这个新风口行业的从业者薪资普遍偏高。
给大家举个栗子
假如你是运营良好的淘宝服装店店长,你会及时掌握一天卖多少件商品、挣多少钱、哪个品牌卖的多、哪个品牌卖的少、哪种商品需补货、哪种颜色受欢迎等信息,以便做策略调整,保持竞争优势。
这就是了解情况。
积累一定数据后,你会发现一些规律,如:人群甲喜欢买圆领深色服装,而人群乙喜欢买宽松浅色服装,有人买A品牌后会购买B品牌短裤,有人浏览C页面后会对D品牌产生兴趣。
这就是数据挖掘。
于是,你将圆领深色服装推销给甲,将宽松浅色服装推销给乙,将B品牌短裤购买链接添加在A品牌购买页中,将D品牌促销优惠加到C页面,一番操作后商品销售量大幅提升。
这就是发现规律。
观察一段时间,你发现E品牌被浏览2-3次就能售出一件,于是你想办法增加E品牌点击次数,通过浏览量趋势来大致预测未来一段时间内销量的变化情况。
这就是预测将来。
大数据分析要具备啥能力?
如果你想进入大数据分析行业,成为该领域的佼佼者,下面这几块是优化方向,供大家参考!
▼
基础知识
与朱朝阳还没有完全成型的思维相比,数据分析师在数学知识的基础上,引入了统计学,其基础知识包含数学、线性代数、统计学等,这些也是决定数据分析职业发展高度的基石。
对于初级数据分析师,学习描述统计相关的内容和公式即可,但要更进一步就需掌握统计算法,甚至机器学习算法等更多知识,对于算法相关的工作,则要对高数进行深入学习。
▼
分析工具
Excel运用最广,是最容易入门的数据分析工具之一,函数、数据透视表和公式必须熟练掌握。
另外,具备一个专业统计分析技能更好,SPSS作为入门是极好滴。不过随着数据的增长,编程语言的学习,如Python等将会使数据处理变得更高效。
当然,只要和数据打交道,我们就会接触到数据库,所以要学SQL(数据库),掌握基本的增、删、改、查等技能。
最后,可以学写主流的利器,如Python或R,有些行业可能会用到SAS或其他工具,请依据自己的行业选择。
▼
业务/行业/商业知识
为摆脱嫌疑朱朝阳对数据进行清洗,数学家为解决难题收集数据……种种迹象能看出,脱离业务的纯数据分析没有任何意义,没行业背景的技术如空中楼阁。
别走进死胡同,想成为优秀的数据分析师或培养自己的数据分析思维, 首先要对业务了如指掌。
熟悉业务后再去获取需要的数据,对数据进行业务分析,制定出相应方案,这才是王道。
▼
沟通能力
数据分析会涉及到很多和业务部门、技术部门的沟通,做出报告后也需要进行展示,并说服别人接受自己的结果。
因此,协调沟通能力对于数据分析者而言,也是非常重要的素质之一。
▼
学习力
无论是数据分析,还是其他岗位,都需要有持续、快速学习的能力,学业务逻辑、行业知识、技术工具、分析框架……
END
大数据技术的出现,是为更好的服务于大众,而非欺骗忠实顾客,谋取高额利益的手段。建议消费者跟上时代的脚步,多了解大数据,培养大数据思维,从而明白如何维护自己的权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08