
作者:丁点helper
来源:丁点帮你
前几天的文章,我们聚焦在回归分析,今天来看看在回归分析中常常要研究的一类难点问题——交互作用的探究。
交互(interaction),字面上不太好理解,但是从数学表达上却很简单。
如果想要研究两个自变量如X1和X2的交互作用,通常的做法就是将两个变量相乘,即X1*X2,然后把乘积项纳入到回归方程。
操作起来很简单,但交互项的纳入对于回归系数的解读却带来了新的问题。
以一个很经典的例子来说明。
含交互项的回归方程
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
我们想通过线性回归研究教育程度、性别对个人收入的影响,首先,不纳入交互项的回归方程为:
其中,Y表示收入,X1表示“教育年限”(定量变量),X2表示“性别”(分类变量,用”0“为女性;“1“表示男性)。
通过估计以上回归方程X1和X2的回归系数,β1和β2,即可定量地衡量出教育程度、性别对收入的影响。
比如,β1的含义即为:控制性别后,教育程度每增加一年,个人收入增加的量。
这是我们前面讲过的,很好理解。
现在,我们希望考虑”教育程度“和”性别“的交互作用,因此将把两个变量的交互项纳入回归方程,即为:
其中,X1X2代表交互项,这里也属于多重线性回归的范畴,因为我们可以令X3=X1X2,将其视为一个新变量,则上式就可以看做是拥有三个自变量的一般线性回归。
思考:现在方程中X1的回归系数β1还能按照上面的含义来解读吗?
我们尝试做一下。
要衡量X1对Y的作用,归根结底,是要看,当X1变化一个单位时,Y怎么变化(明白这一点很基础也很重要)。
因此,我们可以这样来做:
当X1=0时(代入有交互项的方程,下同),
由此,可以发现,加入交互项后,X1(即教育程度),每变化一个单位(比如增加一年),收入的变化不仅取决于β1,而且还取决于β3和X2。
因此,我们不能再直接将β1解读为教育程度对收入的影响。
同理,β2也不能直接解读为性别对收入的影响。
在这样的情况下,到底应该如何来对这三个回归系数进行解读呢?思路其实很简单,诀窍就是分别让X1和X2等于0。
由此来看,加入交互作用后,回归系数(β1和β2)的解读需要加入一定的限定条件,比如”教育程度为0“、或者特定为“女性人群“。
这实际上是出于简单的数学考虑:因为让一个变量等于0,我们就可以消除交互项,然后单独地分析另一个变量的效应,这种思路特别方便,大家不妨在自己的研究中使用。
说完β1和β2,那β3怎么解读呢?严格而言,β3才是真正交互项的系数,才是做交互研究最关注的部分。
交互项回归系数的解读
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
上面我们讲了β1的含义是”对于女性人群,教育程度每增加一年,其收入的增加量“。很自然的想,那对于男性人群,教育每增加一年,收入增加多少呢?
前面我们计算了,X1从0变化到1时,
我们知道,X2表示的是性别这个变量,X2=1代表男性,那如果我们直接把X2=1代入上式呢:
由此,我们就得到了:对于X2=1(即男性人群),当X1增加一个单位时,Y的变化量为(β1 + β3)。
因此,可以把(β1 + β3)解读为:对于男性人群,教育程度每增加一年,收入的增加量。
把男性和女性放在一起对照看一下:
β1:对于女性人群,教育程度每增加一年,其收入的增加量。
β1 + β3:对于男性人群,教育程度每增加一年,其收入的增加量。
现在,β3(即交互项的回归系数)的含义是不是一目了然。它表示,教育程度每增加一年时,男性和女性收入增加的差值。
代入具体的数字看起来会更容易。
比如,我们让β1 = 200;β2 = 300;β3 = 50,就可以很清楚地看到:
对于女性来讲,教育程度每增加一年,收入会增加200(β1 的含义);
对于男性来讲,教育程度每增加一年,收入会增加250(β1 + β3的含义)。
而β3就表示,同样增加一年的教育程度,收入的增加量,男性比女性多50。
这多出来的50就衡量了性别和教育的交互作用。
理清了这三个系数的意义,我们再来看交互作用的真正含义,就会更加明朗:
交互作用实际上影响的是一种关系,什么关系?X1和Y的关系,或者X2和Y的关系。
此话怎讲?我们看,当不加入交互项的时候,无论男性还是女性,教育程度增加一年,收入的增加量是一样的,都为β1。
这里的β1 可以视作教育程度对收入的影响,实际上是两者相关关系的量化。
但是,加入交互作用后,教育程度增加一年,收入的增加量,男性和女性就不一样了,一个是β1 + β3,另一个是β1。
不难发现,教育程度对收入的影响随着性别的变化发生了变化。
所以,从本质上看,交互项衡量的了性别对【教育程度与收入关系】的影响。用括号括起来就是希望大家能看的更清楚:性别和教育的交互项影响的既不是教育程度也不是收入,而是它们两者的关系。
如果数学基础不错,则可以将“【教育程度与收入关系】”理解为回归方程的X1(教育程度)的斜率(斜率的定义就是X1变化一个单位,对应的Y的变化量),所以,本质上,交互项影响的是斜率!
同样地,交互项因为是乘积的形式,所以它也衡量了教育程度对(性别与收入关系)的影响。
如何进行分析,做法其实完全一致,首先分别计算X2=0和X2=1时候,Y的变化量(代表了男女收入的差异):
我们知道X2表示性别,所以,根据上式,可以将β3解读为:教育程度的变化,带来的男女收入水平差异的变化,注意这里说的是”差异“,即男性工资高于女性的那一部分(如果β3是负数,则表示男性工资更低)。
因此,综合来看,交互项是可以从两个角度去理解和解读的,这符合它进入回归方程的方式(X1X2)。
针对具体的问题,我们都可以采取上面说的这种”归零法“去分析和拆解,即分别一个自变量等于0,然后分析另一个自变量回归系数的含义。
同时,专门对于交互项的解读,我们要知道它刻画的其实是对回归斜率或者回归效应值(β)的影响。
比如教育程度和性别的交互,既影响了收入对教育程度的斜率,也影响了收入对性别的斜率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08