京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
前面,我们详述了各种检验方法的基本逻辑以及实操过程,包括t检验、方差分析、卡方检验、和基于秩次的非参数检验,从今天开始,我们就要进入一个新的主题——相关与回归。
相关与回归,尤其是后者,在卫生或医学统计学中应用的十分广泛。这两种方法都是在探寻两个或两个以上变量之间的关联,或者称“相关关系”。
可是,我们做研究的终极目标并非是为了获得“相关”,而是获得“因果”。
某种疾病病死率的下降与使用新药有关,这里的有关,实际上在暗示,新药的使用,导致了病死率的下降,这里的“导致”就表明产生了因果关系。
相关是比因果更宽泛的概念,两个变量存在因果关系,几乎可以肯定会存在相关关系(不限于线性相关);但反过来,却不能成立,具有相关关系的数据,并不一定存在因果联系。
统计书中举的最简单的例子是“小树的身高和小孩的身高”——小树长、我也长,从数据来看,它们存在非常显著的相关关系。
但是,有何意义吗?并没有。我们并不能从这两个数据表面的相关来推导出小树身高对小孩身高造成何种影响?
是的,无论是简单的单因素假设检验(如两组样本的t检验),还是纳入了多个因素的线性回归分析,本质上,我们是希望获得一个因素对另一个因素的“影响”。
产生影响意味着什么呢?意味着发生了因果关系。
比如有人说“刷抖音影响学习”,把这句话用统计的语言来表达和验证就是:抽取一群学生,随机分配到两组,一组天天刷抖音,另一组不刷,然后比较两组学生的平均成绩。
如果抖音组的成绩低,那我们就可以下结论说:刷抖音影响学习,更准确地说,刷抖音导致学习成绩下降。同样,注意这里的用词,“导致”意味着因果关系。
以上当然是一个不严谨的“随机对照试验”,存在很多漏洞值得讨论。但我们举这个例子的意图只是想让大家明白,如果你想验证“因果关系”,理论上,这或许是唯一准确的办法。
再往深想一想,或许也不应该称为“理论上“唯一准确的办法,而应该称作“具有实现可能”的唯一准确办法。
言外之意,还有不可实现的方法吗?
是的,要做因果推断,最准确的应该是通过构造”反事实“来实现。
什么叫反事实?它是根据英文翻译过来的,叫做counterfactual facts,看第一个单次的词根”counter“就是”反、对抗“的意思。说起来似乎很拗口,但理解起来并不费劲。
仍以上面刷抖音和学习的例子来看,怎样通过构造”反事实“来探究这两者之间的因果关系呢?
很简单,让一个特别喜欢耍抖音的小朋友一直刷,然后记录其期末考试成绩;还是这个小朋友,让它做时光机重新回到学期开始的时候,什么都不变,唯独一点变了——没有抖音了,然后再看这个小朋友期末考试成绩。通过比较他的两次成绩,就能准确地判断出”刷抖音是否影响了他的学习“。
这就是所谓的”反事实“,因为他刷抖音这是个事实,在现实生活中,我们是无法改变这个事实的,所以只能通过在脑海中构建”他不刷抖音“这个反事实。实际上,因果推断的金标准——随机对照试验,就是一种模拟”反事实“的方法。
绕这么大一个圈给大家讲反事实,就是想提醒大家,因果关系推断之难。
别说反事实,就是随机对照试验,对很多研究来讲都是不可能实现的。
我们唯一(或者大部分)能获得就是眼前看到的这个世界发生的一切——所谓的”观察性数据“(Observational data),可我们的目的偏偏是希望从这些”观察性数据“中间获得”因果性推断“。
当我们采用统计方法来探究变量间的关系时,我们应该保持谨慎,因为几乎所有的方法都是在进行”相关关系“的探究,而非”因果关系“,这一点是我在咱们这个系列文章的开头想跟大家讲的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17