京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R软件导入数据_r语言怎么导入数据_R软件导入数据
R软件导入数据
1.Rcmdr安装包导入数据:
1.安装Rcmdr包,输入:
install.packages(“Rcmdr”)
回车
接着就让其自动操作,选择一下镜像站就可以了。
2.接着运行,输入:
library(Rcmdr)
回车
就会出现附件的图形界面,在这个界面上可以实现几乎所有的统计分析方法。
以后运行,只要输入 library(Rcmdr) 即可。
————————————————————————————
2.鼠标导入:
另外数据导入还可以采用如下方式:read.table(choose.files())
——————————————————————————————
3.更改目录,语句导入:
手动方式定义自己的默认文档。导入数据。
1.右键R软件快捷方式=》属性=》起始位置=》输入目录名如:D:/data
2.打开R
3.输入 getwd() 回车怎么样,默认目录变成D:/data了吧。
4.输入read.table(“文件名.格式”)回车。导入成功。
以后只需把数据这个默认文件夹就可以了。
若想将数据转化为对数形式,输
入下面语句:
关键词:R软件 [] [,] 对数 log[,
da=read.table(“x.txt”,header=T)
注:da是这里取的名字。
读取数据时,txt文件第一行可以是数据标签。header=T则会从第二行开始取数据,否则从第一行开始取。
>daa=log(da[,1])
这里[,]是什么意思呢?维度的意思。

R软件初步:导入数据
因为我的txt数据只有一列所以我这里输入的是[,1]
好了这样就转化为对数形式了。
R如何导入数据
请问R软件如何导入数据,我在论坛中看到了相应的问答,但是没有得到答案,请大家帮忙,谢谢!说是要放在一个目录下,是什么意思,是将数据与R安装放在一个目录下吗?
文件不需要跟R安装文件放在同意文件夹下。 你只需要把R的working directory 改成数据所在文件夹就行了。
有几种不通的读入方法,根据你的数据类型, read, read.csv, read.table…..
若果数据是.csv,如下:
read.csv“<name_of_your_file>” 应该就可以了。
R的working directory 在哪里??
就是R软件→文件→改变工作目录→数据所在的目录,前面说的working directory就是工作目录
首先看你的数据文件是什么类型,假如是txt文档并且放在C盘目录文件下,程序就是 read.table(“C:/***.txt”)
如果是SPSS文件就是read.spss(“C:/***,sav”)
如何用R软件导入excel数据表中数据
请问如何在R中引用电子表格中的数据,我看了有关数据导入的文献,可是不太明白,期盼知道的同仁给予说明!
把EXCEL数据转换成单表格格式.csv,然后利用read.csv读入
我有一篇关于R数据导入导出的文章,可是写的不是很详细,
还想请教一下 如何对指定目录的数据导入
我用read.table(“file”…)格式导入 可是显示 文件不存在 但事先我已经将文件放在 文件bin 中了
|
excel表可以先转化成“文本文件(制表符分隔)”,
用函数read.delm()读该文本文件! 即>rd<-read.delim(“.txt”) |
如果你有什么细节的问题可以采用help命令,help(read.table)
可以下载这个包 xlsReadWrite
然后可以用read.xls
将excel表格转换成“文本文件(制表符分隔)”,
用read.table(“.txt 文件的绝对路径”,header=T)
或者转换成.csv也行,用法与read.table()一样
只需改成read.csv()即可
一定要用绝对路径,否则运行出错,最好放在R 文件区
试试 用 package “XLConnect”, 不过总会出现一些问题:比如script 无法保存,R界面无法正常工作
library(XLConnect)
wd<-choose.dir()
setwd(wd)
dir()
fnm<-dir()
fnm
wb1<-loadWorkbook(fnm[1])
gini.header<-readWorksheet(wb1,sheet=”gini”,startRow=1,endRow=1,rownames=F)
gini<-readWorksheet(wb1,sheet=”gini”,startRow=3,header=F)
library(RODBC)
随便起个名 = odbcConnectExcel(file.choose())
sqlTables(上面那个名)
随便起个名 = sqlFetch(上面那个名, “excel里的文件名”)
第一种方法:首先将当前工作目录更改所使用的文件下,利用change directory修改工作目录。
第二种方法:在read.table()中给出路径。路径中的“\”必须全部用”/”替换。
excel另存为.CSV
R命令:read.csv(file.choose()) 【如果第一行为标题行,命令为:read.csv(file.choose(),header=TRUE)】
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26