京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python 日期和时间_python 当前日期时间_python日期格式化
Python程序能用很多方式处理日期和时间,转换日期格式是一个常见的功能。
Python 提供了一个 time 和 calendar 模块可以用于格式化日期和时间。
时间间隔是以秒为单位的浮点小数。
每个时间戳都以自从1970年1月1日午夜(历元)经过了多长时间来表示。
Python 的 time 模块下有很多函数可以转换常见日期格式。如函数time.time()用于获取当前时间戳, 如下实例:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import time; # 引入time模块
ticks = time.time()
print "当前时间戳为:", ticks
以上实例输出结果:
当前时间戳为: 1459994552.51
时间戳单位最适于做日期运算。但是1970年之前的日期就无法以此表示了。太遥远的日期也不行,UNIX和Windows只支持到2038年。
什么是时间元组?
很多Python函数用一个元组装起来的9组数字处理时间:

上述也就是struct_time元组。这种结构具有如下属性:
获取当前时间
从返回浮点数的时间辍方式向时间元组转换,只要将浮点数传递给如localtime之类的函数。
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import time
localtime = time.localtime(time.time())
print "本地时间为 :", localtime
以上实例输出结果:
本地时间为 : time.struct_time(tm_year=2016, tm_mon=4, tm_mday=7, tm_hour=10, tm_min=3, tm_sec=27, tm_wday=3, tm_yday=98, tm_isdst=0)
获取格式化的时间
你可以根据需求选取各种格式,但是最简单的获取可读的时间模式的函数是asctime():
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import time
localtime = time.asctime( time.localtime(time.time()) )
print "本地时间为 :", localtime
以上实例输出结果:
本地时间为 : Thu Apr 7 10:05:21 2016
格式化日期
我们可以使用 time 模块的 strftime 方法来格式化日期,:
time.strftime(format[, t])
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import time
# 格式化成2016-03-20 11:45:39形式
print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 格式化成Sat Mar 28 22:24:24 2016形式
print time.strftime("%a %b %d %H:%M:%S %Y", time.localtime())
# 将格式字符串转换为时间戳
a = "Sat Mar 28 22:24:24 2016"
print time.mktime(time.strptime(a,"%a %b %d %H:%M:%S %Y"))
以上实例输出结果:
2016-04-07 10:25:09
Thu Apr 07 10:25:09 2016
1459175064.0
python中时间日期格式化符号:
%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身
获取某月日历
Calendar模块有很广泛的方法用来处理年历和月历,例如打印某月的月历:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import calendar
cal = calendar.month(2016, 1)
print "以下输出2016年1月份的日历:"
print cal;
以上实例输出结果:
以下输出2016年1月份的日历:
January 2016
Mo Tu We Th Fr Sa Su
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
Time 模块
Time 模块包含了以下内置函数,既有时间处理相的,也有转换时间格式的:

Time模块包含了以下2个非常重要的属性:

日历(Calendar)模块
此模块的函数都是日历相关的,例如打印某月的字符月历。
星期一是默认的每周第一天,星期天是默认的最后一天。更改设置需调用calendar.setfirstweekday()函数。模块包含了以下内置函数:

其他相关模块和函数
在Python中,其他处理日期和时间的模块还有:
datetime模块
pytz模块
dateutil模块
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23