京公网安备 11010802034615号
经营许可证编号:京B2-20210330
t检验中的t值和p值是什么关系_t检验和p值的关系
t检验中通过样本均值 总体均值 样本标准差 样本量 可以计算出一个t值,这个t值和p值有什么关系?
根据界值表又会查出一个数,这个数和t值比较,得出大小,判断是否接受原假设。感觉p值一直都没有什么作用?
解答:在进行t检验时,会计算出一个t值,而在选定显著性水平后,可以找到相比较的t值,两者可以比较,判断显著性。p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果p值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表了。
准问:其实是不是可以理解成 就是按照自由度和0.05来查表看p值的范围。例如 自由度是34的话,t〈t 0.05,34,则表示P >0.05,按α=0.05水准,接受原假设H0。
可以这么理解么?
回答:可以这么理解,t值其实就相当于确定的了一个置信区间,在这个区间内,接受原假设,而p表示的是置信区间之外的那部分;在确定t值时置信区间已经确定了,p值也就确定了,p值作为一个标准,你可以选的是显著性水平,只要比较一下就可以。两者在本质上时一样的。
其他解答:你这样理解是有偏误的。p值是根据统计量值计算出来的,跟显著性水平是没有关系。只能说根据计算出来的p值来和显著性水平比较,当p值小于显著性水平是拒绝原假设。而不能说根据显著性水平确定p值的范围。简言之,p值是根据样本计算出来的,而显著性水平则是认为规定的
解答:同意你的观点,p value is usually based on sample, and it is a calculated value, but significant level is usually set by statisticians subjectively…
其他疑问:这样啊~
基础知识不好 其实我应该是压根都不知道p值是怎么算出来的 例如 通过样本均值 总体均值 样本标准差 计算出了 t=1.77,自由度=34,查t界值表可以获得一个对应值 2.032,那p值是根据2.032计算出来的么?还是其他的方法?
多谢啦~
解答:不对。你这个2.032是根据给定的显著性水平计算出来的吧。p值不依赖于这个,p值就是在给定的自由度下(注意这里不要求显著性水平),通过计算出来的统计量值t=1.77,结合t分布求出当T>1.77是的概率 ,这个概率就是p值,如果是双侧检验的话还要乘以2
当显著性水平为0.05,自由度为34的时候,查t界值表得到一个对应数据2.032。这个值的意义主要是什么呢?数据分析培训
p值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成p值,或者将显著性水平换算成t值。就是这么简单粗暴
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29