
SPSS教程生存分析的Cox回归模型
最近有同学问师兄,「最近我要做生存分析,可是不太会,也不太懂,师兄能不能教教我?」好吧,今天开一贴,讲讲这个。有同样问题的同学可以一起来看看,毕竟在临床科研上,这方面知识还是很受用的。
一生存分析基本概念
1、事件(Event)
指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。
2、生存时间(Survival time)
指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。
3、删失(Sensoring)
指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。
4、生存函数(Survival distribution function)
又叫累积生存率,表达式为 S(t)=P(T>t), 其中 T 为生存时间,该函数的意义是生存时间大于时间点 t 的概率。t=0 时 S(t)=1,随着 t 的增加 S(t) 递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间 T 不超过 t 的概率。
二生存分析的方法
1、生存分析的主要目的是估计生存函数,常用的方法有 Kaplan-Meier 法和寿命表法。对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。
2、如果考虑其他影响生存时间分布的因素,可以使用 Cox 回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。这里的前提是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的 Cox 回归模型。
三举例说明
下面用一个例子来说明 SPSS 中 Cox 回归模型的操作方法。
例题:研究胰腺癌术中放疗对患者生存时间的影响
收集了下面所示的数据:
操作步骤:
SPSS 变量视图:
菜单选择:
点击进入 Cox 主对话框,如下,将 time 选入「时间」框,将代表删失的 censor 变量选入「状态」框,其余分析变量选入「协变量」框,其余默认就行。
点击「状态」框下方的「定义事件」,将事件发生的标志设为值 0,即 0 代表事件发生。
在主对话框中点击「分类」按钮,进入如下的对话框,将所有分类变量选入右边框中
在主对话框中点击「绘图」按钮,进入如下的对话框,选择绘图的类型,这里只选择「生存函数」。由于我们关心的主要变量是 trt(是否放疗),所以将 trt 选入「单线」框中,绘制生存曲线。
在主对话框中点击「选项」按钮,进入如下的对话框,设置如下,输出 RR 的 95% 置信区间。回到主界面,点击「确定」输出结果。
结果输出:
这是案例处理摘要,有一个删失数据。
这是分类变量的编码方式。
这是对拟合模型的检验,原假设是「所有影响因素的偏回归系数均为 0」,这里可以看出 P=0.032<0.05 拒绝原假设,认为有偏回归系数不为零的因素,值得进一步分析。
这是多元回归结果,第二列 B 为偏回归系数,最后三列为 OR 值及其置信区间。由 P 值可以看出,在 0.5 的显著水平下,只有 trt 有统计学差异,OR 为 2.265。
这是协变量的平均值。
这是总体的生存函数,即累积生存率函数。
这是在控制了其他变量后,有无放疗组的生存函数对比,可以看出,术中放疗患者的生存情况优于不放疗的患者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15