
金融业是大数据应用的一个重要阵地,其先锋性和潜力不逊于互联网、电信业。
“绝大部分金融公司现在不会再问大数据是什么,有什么好处,而是问怎么做。”Pivotal亚太区产品战略总监李凯翔近日在接受21世纪经济报道记者采访时表示,这是金融行业大数据最近两三年来的改变。
Pivotal是由EMC公司和VMWare公司于去年3月份成立的大数据公司,其整合了两家的数据分析和云应用资产。目前,Pivotal在亚太区已拥有几十家金融机构客户。
李凯翔表示,目前中国的金融机构在大数据方面发展快速,尤其是二线的一些银行,因为他们船小好调头,同时四大行也在有计划的推进大数据。而且,在大数据方面投入的不只是银行,券商、保险、交易所等泛金融类机构都在尝试大数据应用。
李凯翔表示,这些金融机构在大数据建设方面有一个共同点,即首先打破内部信息孤岛,实现数据统一。
两种模式的价值取向
李凯翔表示,金融机构大致分为零售型和商业银行型,前者比如零售银行、信用卡、零售券商等,后者可能是一种大型银行之间的服务,或者是一个大型的交易所。这两种类型在大数据应用方面的出发点有所不同。
传统零售型金融机构一般只记录一些交易、销售等描述性数据,但这部分数据并未得到更加充分的利用。李凯翔以信用卡为例说,从银行角度来看,当用户通过网络或实体店刷卡消费时,这些消费数据会进入银行系统,之前银行只是关注简单的刷卡记录,而没有做外延式的深入分析。而在大数据时代,银行则可以把所有数据综合起来进行分析,比如哪家店使用其信用卡的频次高,从而实现联合营销。
“将这些外部数据和已有的数据连接在一起,然后去做一些分析,这是最明确的方向。”李凯翔表示,零售对大数据的吸收能力是最强的,也是最成熟的,因为它和电子商务做的东西非常类似,只是产品形态不同,一个实物,一个无形产品,两者需要做的都是要深入了解和分析客户特征、需求,针对性的提供商品。
事实上,这一模式在互联网金融领域已逐步成熟,不仅是信用卡、理财产品,甚至小微贷款、消费者信贷等都可以通过大数据画像的方式实现交易和销售。
李凯翔告诉记者,他非常同意BBVA(欧洲一家大型金融机构)CEO的一句话,“银行要么追上亚马逊或者Google,要么就是死亡”。他还预测,如果有一天Facebook可以在任何地方拿到银行业务许可的话,马上会变成全世界最大的银行,因为它有超过10亿的用户。
当然,李凯翔认为,金融机构对行业的理解、趋势的判断和风险的把控更强更深入,一旦充分利用大数据,价值将更大。
商业型金融机构对大数据的利用便是进入一个专业的领域。据李凯翔介绍,这类机构更多的是对内部的数据的整合。他以投资银行为例,传统模式下,交易部门和研究部门的数据是相互独立,甚至数据的储存格式都不同,由此形成一个一个信息孤岛,业务上也是交易部门赚取佣金,研究部门以卖报告为主要收入,相互独立。但当引入统一的大数据平台后,以统一格式将大数据存储,各部门之间就会产生联系。
交易部门通过这个平台,可以了解到哪些客户在研究部门买了什么研究报告,并在多长时间内下单,为什么下单,下多大的单,然后根据分析了解客户的特征,为其“画像”,以便推出新产品时更精确的寻找客户,同时也能够及时了解资本市场的动向。而研究部门则可以通过交易数据,更加准确地对市场做出分析。
从效率到商业模式变革
大数据的发展不仅可以提高金融机构的效率,甚至可以推动商业模式的变革。比如说,大数据在交易所的应用就直接推动了商业模式的延伸。
纽交所曾是Pivotal的一个客户。李凯翔介绍说,以前像高盛这样的机构都会在纽交所租用一定的空间放置主机,以实时了解交易所的交易数据。主机离交易所数据中心越近,数据传输越快。然而,并不是每家投行都可以将主机放在交易所数据中心最近的位置,这导致大家获得数据的速度不同。同时,各家投行每年花费巨资租赁的空间,获得的数据又是一样的,造成极大的资源浪费。
之后,交易所提供了统一的数据平台,各家投行支付一定的费用,可在相同传输速度下获得数据,从而促使纽交所在IPO、交易量、托管之后增加了出售大数据的盈利模式。
李凯翔表示,在亚太地区,中国金融机构在大数据方面的发展较为领先,但同时也面临着一些技术和管理上的障碍。
李凯翔表示,相对其它行业,金融机构在IT方面比较完善,但完善也会带来一个令人头痛的问题,因为一个金融机构的IT供应商有多家,相互独立,并且采用非开源的技术,想要打破信息孤岛,将这些系统连接起来非常困难。还有一个问题是,金融机构的IT人员已经熟悉了原来的系统,因此在项目操作中,都会要求在原有系统上进行改造。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08