京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何面对传统媒体运用大数据时遇到的三大难题
在大数据时代,互联网是骨骼,大数据则是血液。大数据的核心在于数据,具有海量、高频、在线、实时等特点,但是对于传统媒体来说,在运用大数据的过程中,存在着数据资源不足、数据平台欠缺和缺乏有竞争力的数据产品三大难题,笔者在此提出一些相应的解决办法。
难题一:缺乏充足的数据资源
传统媒体目前只有数量极少的数据,原因如下:一是自身数据资源太少。对于绝大多数传统媒体来说,其主要数据资源还仅仅是内部的新闻内容数据、历史数据和媒资数据等,而缺乏用户数据、网络行政数据和政府数据等,导致自身的数据资源量极其有限。二是自身数据多是静态数据,缺乏有效的互动和即时性。三是缺乏用户数据,传统媒体虽然有一定数量的受众数据,但是由于这些受众数据的频率低且没有经过精准画像,导致自身只有受众而没有真正的用户。
因此,传统媒体首先要想方设法获取足够多的数据资源:一是可以利用自身的政治资源,尽可能地获取网络行政、政府数据等高价值的数据资源;二是建立起自身的用户体系,逐步变受众数据为用户数据;三是尽快把现有静态的存量内容资源转变为动态的、互动的数据资源。
难题二:缺少大数据平台
传统媒体要想真正建立起属于自己的大数据,其前提是必须打造数据充足、技术先进、用户活跃的大数据资源平台,智能生产和传播平台以及用户沉淀平台三大平台。传统媒体在打造大数据平台时,面临三大制约:一是思维和观念陈旧,二是缺乏先进的技术支持,三是需要大量的资金。
当前,国家提出了国家大数据工程,各地政府正在大力推进智慧城市建设和政府数据开放工程,传统媒体可以积极利用自身的政治优势把三大平台建设纳入政府的智慧城市建设中,建立起大数据平台和区域内的数据交易平台。这么做的优势在于:一是站在整个区域的大数据发展的基础上;二是可以借助政府智慧城市的建设工程来解决自身的技术和资金问题;三是可以获取政府的数据资源。
难题三:缺少有竞争力的大数据产品
数据资源的积累和三大平台建设的目的,都是为了开发出具有高商业价值、富有竞争力的大数据产品。传统媒体要想重建商业模式,实现自身的彻底转型,就必须打造出在市场上有高度竞争力的大数据产品。
打造成功的大数据产品需要注重如下三点:一是以用户需求为导向。在对用户进行精准画像的基础上,利用大数据手段找出用户的痛点和需求,进而基于用户的需求来开发产品。二是实现业务人员、数据人员和技术人员的“混”。当前,一方面懂业务的不懂技术和数据,懂技术和数据的又不懂业务,另一方面业务、技术和数据人员相互割裂,甚至互相看不起或不理解,这导致难以有效地开展工作,而要解决这个问题,首要就是要实现他们之间的“混”,即协同办公。三是实现业务、数据和技术之间的“通”。大数据产品一定是业务、数据和技术三者之间的协同互通,只有三者之间相互理解、相互熟悉、相互帮助,才能真正开发出有竞争力的大数据产品,在具体运作中,可以设立数据产品经理来解决这个难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16