
SPSS:方差分析之趋势检验
有网友问方差分析可以做趋势检验吗?比如想知道研究对象的指标是否随着年龄的增长有变化趋势时,是否可以用趋势检验得到答案呢?其实SPSS是提供了解决办法的。
〖例题〗已知97名幼儿的体检资料,已建立数据文件child.sav,试按年龄组(age)对坐高(x6,cm)进行方差分析并做趋势检验。
一、数据格式
1、x6(坐高)为数值变量。
2、age(年龄组)为数值变量,共有3个年龄组,其值标签分别为:5-5周岁;6-6周岁;7-7周岁。
二、方差分析
步骤:选择【分析(Analyze)】→【比较平均值(Compare Means)】→【单因素ANOVA(One-Way ANOVA)…】
☆因变量列表(Dependent List),应为定量变量,选择x6(坐高)。
☆因子(Factor)变量,变量值应为整数,选择age(年龄组)。
●注:由于需要进行趋势检验,要求因子变量必须为有序变量。
当因子变量为有序变量时,选择多项式(Polynomial),可进行趋势检验,可将组间平方和划分为趋势成分,并检验因变量在因子变量分组顺序水平间的趋势是呈现线性变化趋势,还是呈二次、三次等多项式变化 。在此选择度(Degree,次数)下拉菜单中的线性(Linear)项。
☆Statistics(统计),选择描述性(Descriptive)和方差同质性检验(Homogeneity of variance test,方差齐性检验)。
并选择平均值图(Means plot)。
二、结果分析
1、描述性(Descriptives)表,5岁组、6岁组、7岁组儿童的坐高平均值分别为58.888、61.424、64.650。
2、方差齐性检验(Test of Homogeneity of Variances)表,Levene统计量(Levene Statistic)为0.176,P=0.839>0.10,按α=0.10水准,可认为3个年龄组儿童坐高的总体方差齐。
3、方差分析(ANOVA)表(红字部分),F=36.767,P=0.000<0.05,按α=0.05水准,故可认为3个年龄组儿童坐高的总体平均值不全相等,各组方差齐时,应采用F检验的结果。
4、趋势检验的线性项(Linear Term)(蓝字部分),F=68.402,P=0.000<0.05,按α=0.05水准,可认为儿童坐高随着年龄的增长呈现线性变化趋势,平均值图(Means Plots)显示:儿童坐高与随着年龄的增长呈上升的线性趋势,两者的结果是一致的。
理论上类似的因子变量为有序变量的情况都可以进行趋势检验,如因子变量为不同药物浓度水平、接触有害因素时间的长短等都可以进行趋势检验,但有个前提条件是分析的资料要满足方差分析的条件。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10