京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS:方差分析之趋势检验
有网友问方差分析可以做趋势检验吗?比如想知道研究对象的指标是否随着年龄的增长有变化趋势时,是否可以用趋势检验得到答案呢?其实SPSS是提供了解决办法的。
〖例题〗已知97名幼儿的体检资料,已建立数据文件child.sav,试按年龄组(age)对坐高(x6,cm)进行方差分析并做趋势检验。
一、数据格式
1、x6(坐高)为数值变量。
2、age(年龄组)为数值变量,共有3个年龄组,其值标签分别为:5-5周岁;6-6周岁;7-7周岁。
二、方差分析
步骤:选择【分析(Analyze)】→【比较平均值(Compare Means)】→【单因素ANOVA(One-Way ANOVA)…】
☆因变量列表(Dependent List),应为定量变量,选择x6(坐高)。
☆因子(Factor)变量,变量值应为整数,选择age(年龄组)。
●注:由于需要进行趋势检验,要求因子变量必须为有序变量。

当因子变量为有序变量时,选择多项式(Polynomial),可进行趋势检验,可将组间平方和划分为趋势成分,并检验因变量在因子变量分组顺序水平间的趋势是呈现线性变化趋势,还是呈二次、三次等多项式变化 。在此选择度(Degree,次数)下拉菜单中的线性(Linear)项。
☆Statistics(统计),选择描述性(Descriptive)和方差同质性检验(Homogeneity of variance test,方差齐性检验)。
并选择平均值图(Means plot)。
二、结果分析
1、描述性(Descriptives)表,5岁组、6岁组、7岁组儿童的坐高平均值分别为58.888、61.424、64.650。
2、方差齐性检验(Test of Homogeneity of Variances)表,Levene统计量(Levene Statistic)为0.176,P=0.839>0.10,按α=0.10水准,可认为3个年龄组儿童坐高的总体方差齐。
3、方差分析(ANOVA)表(红字部分),F=36.767,P=0.000<0.05,按α=0.05水准,故可认为3个年龄组儿童坐高的总体平均值不全相等,各组方差齐时,应采用F检验的结果。
4、趋势检验的线性项(Linear Term)(蓝字部分),F=68.402,P=0.000<0.05,按α=0.05水准,可认为儿童坐高随着年龄的增长呈现线性变化趋势,平均值图(Means Plots)显示:儿童坐高与随着年龄的增长呈上升的线性趋势,两者的结果是一致的。
理论上类似的因子变量为有序变量的情况都可以进行趋势检验,如因子变量为不同药物浓度水平、接触有害因素时间的长短等都可以进行趋势检验,但有个前提条件是分析的资料要满足方差分析的条件。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10