
大数据安全问题频发如何应对是关键
互联网时代最不缺的就是信息、数据,我们在网上的一个小小的点击,背后都隐藏着我们的行为数据,但是我们的数据安全如何保障?这里星光互联的运营师小戴就为大家讲讲大数据安全问题。
这是明确的大数据时代,但它不一定是保证大数据安全的时代。有些大型企业的数据库遭到了可怕的大规模破坏,包括家得宝、塔吉特、NiemenMarcus,以及最近的阿什利麦迪逊公司。大多数大数据的收集器做得远远不够,不能保障自己宝贵的信息不被窥视。如果没有从消费者到生产商,再到供应商的安全协议的重大变化,大数据成为恶意黑客的目标的吸引力增加。
大数据安全问题频发如何应对是关键
不幸的是,有一些阻止数据采集最大充分保护他们的数据的问题。然而,针对这些问题的解决方案可以确保未来大数据的长期案例-只要你和其他人制定他们。
主要的大数据安全挑战
传统的安全机制,如防火墙和防病毒软件目前安装在你的计算机上,但却不足以保障大数据。问题是,这些措施是为了保护小规模、静态信息的文件,你有许多保存在你的硬盘的信息,而不是来自云计算的百万兆字节信息。相反,对于大数据的安全必须是灵活的和快速的,允许快速流和多个入口。
专家在与云安全联盟的成员(一个确定改善云安全非营利性组织)的对话中发现了一些现代企业使用大数据的方式的弱点,这些措施包括:
•安全计算的分布式编程框架。执行多个计算阶段的程序必须有多重保护:一个用于程序,一个保护程序中的数据。
•非关系数据存储的安全性。也被称为NoSQL,非关系型存储的不断进化,当他们这样做,适当的安全必须随着它们一起发展成熟。
•安全数据存储。在过去,当数据在层间移动时,IT管理人员可以直接控制,但对于大数据,很难进行直接控制。而自动分层需要额外的安全机制。
•端点输入验证。当一个系统接收到数以百万计的输入数据时,作为大数据收集通常是这样做的,必须确保每一个输入数据是可信的和有效的。
•实时安全监控。到目前为止,实时的安全在查明真正的安全威胁方面并不是优秀的,而每天都在产生数以千计的假信息。
•数据挖掘和保护隐私的分析。大数据离真实隐私的数据只有一步之遥,因为它可以不经过消费者的意识或同意,编辑强烈的私人信息。
•加密访问控制和安全通信。为了全面安全,数据必须加密终端到终端的数据,但它也必须是有效的,并提供给需要它的那些人。
•细粒度访问控制。不是所有的数据都是同样要保密,企业应该能够过滤他们的安全,尽可能多地分享,同时保持最敏感的信息安全。
•可扩展的审计。要学习违反安全性,必须有详细的审核可供审查;然而,由于大数据的大小规模,这些报告也必须是可扩展到这一事件。
•数据源。数据源的出处复杂性继续在增长,但分析的源图表已经满足计算能力的要求。
提高大数据安全有效性的建议
云计算专家认为,对大数据安全的改进,最明智的指南是已经有几十年的历史的杀毒软件行业。杀毒软件公司应对各种不同的威胁有很多的经验。有无数的杀毒软件商都在为此努力,并都尝试过保护数据免受讨厌的数字错误的渗透。
然而,云计算专家最看重杀毒行业的是其对数据的开放性。而不是锁定了他们的安全机密,获得对竞争对手的优势,反病毒厂商(包括非政府组织,公共机构,甚至是民营企业)都会自由地沟通交流威胁的数据。行业领导者可以一同抵制新的和危险的恶意软件,并保证无处不在的电脑安全。这种开放的沟通和缺乏破坏性竞争的正是大数据需要快速高效地构建强大的安全性所需要的。
以上就是关于大数据安全问题频发及如何应对的一些分享,希望能对广大用户有所帮助。如果有其他不懂的互联网方面的相关问题,可登陆星光互联科技公司平台进行咨询和了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23