
大数据安全问题频发如何应对是关键
互联网时代最不缺的就是信息、数据,我们在网上的一个小小的点击,背后都隐藏着我们的行为数据,但是我们的数据安全如何保障?这里星光互联的运营师小戴就为大家讲讲大数据安全问题。
这是明确的大数据时代,但它不一定是保证大数据安全的时代。有些大型企业的数据库遭到了可怕的大规模破坏,包括家得宝、塔吉特、NiemenMarcus,以及最近的阿什利麦迪逊公司。大多数大数据的收集器做得远远不够,不能保障自己宝贵的信息不被窥视。如果没有从消费者到生产商,再到供应商的安全协议的重大变化,大数据成为恶意黑客的目标的吸引力增加。
大数据安全问题频发如何应对是关键
不幸的是,有一些阻止数据采集最大充分保护他们的数据的问题。然而,针对这些问题的解决方案可以确保未来大数据的长期案例-只要你和其他人制定他们。
主要的大数据安全挑战
传统的安全机制,如防火墙和防病毒软件目前安装在你的计算机上,但却不足以保障大数据。问题是,这些措施是为了保护小规模、静态信息的文件,你有许多保存在你的硬盘的信息,而不是来自云计算的百万兆字节信息。相反,对于大数据的安全必须是灵活的和快速的,允许快速流和多个入口。
专家在与云安全联盟的成员(一个确定改善云安全非营利性组织)的对话中发现了一些现代企业使用大数据的方式的弱点,这些措施包括:
•安全计算的分布式编程框架。执行多个计算阶段的程序必须有多重保护:一个用于程序,一个保护程序中的数据。
•非关系数据存储的安全性。也被称为NoSQL,非关系型存储的不断进化,当他们这样做,适当的安全必须随着它们一起发展成熟。
•安全数据存储。在过去,当数据在层间移动时,IT管理人员可以直接控制,但对于大数据,很难进行直接控制。而自动分层需要额外的安全机制。
•端点输入验证。当一个系统接收到数以百万计的输入数据时,作为大数据收集通常是这样做的,必须确保每一个输入数据是可信的和有效的。
•实时安全监控。到目前为止,实时的安全在查明真正的安全威胁方面并不是优秀的,而每天都在产生数以千计的假信息。
•数据挖掘和保护隐私的分析。大数据离真实隐私的数据只有一步之遥,因为它可以不经过消费者的意识或同意,编辑强烈的私人信息。
•加密访问控制和安全通信。为了全面安全,数据必须加密终端到终端的数据,但它也必须是有效的,并提供给需要它的那些人。
•细粒度访问控制。不是所有的数据都是同样要保密,企业应该能够过滤他们的安全,尽可能多地分享,同时保持最敏感的信息安全。
•可扩展的审计。要学习违反安全性,必须有详细的审核可供审查;然而,由于大数据的大小规模,这些报告也必须是可扩展到这一事件。
•数据源。数据源的出处复杂性继续在增长,但分析的源图表已经满足计算能力的要求。
提高大数据安全有效性的建议
云计算专家认为,对大数据安全的改进,最明智的指南是已经有几十年的历史的杀毒软件行业。杀毒软件公司应对各种不同的威胁有很多的经验。有无数的杀毒软件商都在为此努力,并都尝试过保护数据免受讨厌的数字错误的渗透。
然而,云计算专家最看重杀毒行业的是其对数据的开放性。而不是锁定了他们的安全机密,获得对竞争对手的优势,反病毒厂商(包括非政府组织,公共机构,甚至是民营企业)都会自由地沟通交流威胁的数据。行业领导者可以一同抵制新的和危险的恶意软件,并保证无处不在的电脑安全。这种开放的沟通和缺乏破坏性竞争的正是大数据需要快速高效地构建强大的安全性所需要的。
以上就是关于大数据安全问题频发及如何应对的一些分享,希望能对广大用户有所帮助。如果有其他不懂的互联网方面的相关问题,可登陆星光互联科技公司平台进行咨询和了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19