京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据不在大,而在于完整
我们谈论大数据的时候,我们常常谈论的是数据模型、数据的全面和及时,但对小商家而言,却并不具备获取大数据的条件。对于它们来说,从老客户身上获取的数据才更有意义。
这几年关于“C2B”和“大数据”的说法越来越多,大部分皇冠卖家已经知道了“从客户出发做选择”的重要性,知道了“数据驱动”的重要性。以至于不少皇冠卖家都有了自己专门的“数据研究”人员,大家不仅关注自己的数据,还关注平台的数据。
本来我觉得这是一个很欣喜的事情,不过跟一些商家深入接触后发现,发现原来很多人已经把这条路走偏了。
对于商家来说,研究数据最主要的作用应该是两个:
1)我自己经营的怎么样;
2)让数据来指导我下一步的选择和方向。
表面上很多卖家也是这么干的,但实际操作上的做法又让人觉得很怪异。大家现在的数据工作基本上都是分成两部分:
1)关注自己的流量和ROI,以及简单的动销比;
2)关注平台流量和销量动态,了解什么做的好什么做的不好。
第一部分是基本功,在这里不多说,做好了是应该的,做不好需要提高。和本来的研究数据的目的很匹配,有了这些基本功才能保证商家对自身的经营状况有所了解。
第二部分就很搞了,不是说商家不能研究这一部分数据,而是说这部分数据本质上根本不能帮助商户达到“让数据来指导我下一步的选择和方向”的目的。
大趋势固然重要不能逆势而为,但在具体的问题上自己把握自己更重要,这跟大势无关。
对 于商家来说,平台的“大数据”只是在说这个大平台上现在什么东西好卖、别人家什么样的货卖的好、消费者到这个大平台上主要关注什么东西买什么东西。但这个 大平台上有几百万的卖家,那怕是你自己这个相关品类上也有几万甚至十几万的卖家(,每一家的特点不同,每一群消费者的选择也不同,大家都卖的好不一定你就 能卖好,人家能做的不一定你就能做的到。
如果跟着这个数据走,最后很可能会遭遇一个伤心的结果:当这些热销品开始不好卖的时候,人家已经卖完,而你们家还有满仓满仓的库存。
因 为:这些“大数据”只能告诉你“别人什么地方做的好”,但并不能告诉“你该选择什么”。互联网的特点是变化特别快,当你发现某个“既定趋势”的时候,形势 已经在悄悄的变化,当你再跟进的时候事情已经不是你发现时那个样子了。那类产品不好卖的时候,别人已经在卖尾款了,而你大量的上新,最后库存都是你家的, 别人已经去玩另外一个“新趋势”了,你还在甩尾货。
所以,对于电商这个大游戏里的中小卖家来说(特别大规模的卖家除外):平台大数据仅可以指导你未来的战略方向,基本上跟你眼前的具体战术选择没有直接关系。
每一个卖家应该有自己的“大数据”。“大数据”并不是说数据量有多大,而是数据的完整性怎么样,是不是够你所用。
对 于一个皇冠卖家来说,不仅平台的大数据跟你眼前的选择没关系,你自己每年十几万的包裹数据其实也不能真正说明什么。因为你能拿到的这些数据的维度很小,只 是一些硬梆梆的表象数据,不够说明问题。最多只有什么地方的人、买了我的什么商品、他们有多少人会再回来买,那怕研究的再深,也无法发现背后的原因,更无 法发现下一步的选择方向。
中小卖家的“大数据”应该是跟自己的消费者互动得来,而不是通过机器计算出来,因为你并不具备这样的计算能力。
每 一个做的还不错的卖家,都会有一些认可自己的老顾客和“粉丝”,这些人都是你忠诚的小伙伴儿,把他们转化到类似微信、微博这些可直接沟通的工具上,哪怕把 每年10万个包裹的千分之五转化过去,也有5000个。这5000个粉丝可以告诉商家我喜欢你家的什么服务、什么衣服、什么款式、我想在你家买到什么东 西,商家也可以通过数据和互动了解到自己这些客户的购买能力、购买喜好等等信息。
不管是现在很多商家做的很好的预售、新品调查、上新秒杀、会员专享,其实都不只是看起来这么简单,其背后都是有一个跟“粉丝”沉淀、和互动的过程,通过互动和沉淀项目了解,更有把握的进行选择。
对于商家来说,数据量有多大不重要,重要的是有没有相互足够了解的可以活跃互动的粉丝。10万个包裹只能告诉你眼前有多少销售额,5000个活跃粉丝足以告诉你下一步该选择什么。
当然,这5000个粉丝也不会是一下子攒起来的,瞬间起来的基本都只能靠“给便宜”得来,这些占便宜的人不会真的告诉你该选择什么。这是一个需要积累的过程,通过真心的优质服务和沟通才能真正的建立起来。
我坚信,未来的商业一定会是经过一次次实际“体验”逐渐积累起来的“粉丝经济”时代。这个粉丝经济并不只是你有多少粉丝,而是你的粉丝能够多么的信任你,多么的活跃。他们是不是从认可你,到信任你,到帮你营销和传播,到依耐你。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08