
如何通过SPSS软件实现随机化过程
随机过程是临床研究过程中至关重要的一部分。在前面的内容中我们也讲过了很多关于随机和随机数的内容,请大家参阅旧的目录。本期将跟大家一起讨论一下如何通过SPSS来实现随机化过程。
在说之前,先跟大家聊一聊随机数的类型,随机数有真随机数(True Random Number)和伪随机数(Pseudo Random Number)之分。我们平时所使用的无论什么程序产生的随机数都是伪随机数,它是有“种子”的,种子决定了随机数的固定序列。而真随机数很多情况下只能看老天的眼色,比如掷骰子、布朗运动、量子效应、放射性衰变等等,所以说我们在临床研究中常用的软件产生随机数的方法都是伪随机数,伪随机数虽然不具有完全的随机性,但是已经足够用了。
总体上SPSS为随机化提供了两类过程,第一类过程直接进行随机抽样或分组,第二类过程只生成随机数字,需要研究者依据随机数字自己去进行随机抽样或分组。
在上述过程中,我们都可以选择采用“随机种子数”或“固定种子数”两种方式来产生随机数。采用“随机种子数”时,随机数字不可重现;采用“固定种子数”时,随机数字可以重现出来。由于SPSS的syntax不是所有人都常用,在此就不说了,其实大家可以通过点击paste选项保存出任意计算过程的syntax语句。下面分别介绍其它三种随机数生成方法:
1、利用“选择个案”窗口实现
a.设定种子数:顺序点击转换、随机数字生成器,勾选Mersenne Twister(相比兼容SPSS12更可靠),勾选固定值(设定一个自己的种子数),点击确定。这样就设定好了种子数。
b.依次点击数据、选择个案,点选随机个案样本(D),点击样本,点选其中一个并填入数值,点击继续,点击确定即可。如下图:
2、利用“复杂抽样”窗口来实现;
复杂抽样窗口可实现分层抽样,并保存出抽样计划和抽样结果文件。按照其提示一步步点击即可。为了简化,后面过程不再截图。
3、利用“计算变量”窗口来实现
a.设定种子数,方法同上。
b.点击转换、计算变量,在目标变量中给变量起一个名字,在函数组中点选随机数字,点选任意一个随机函数,填入适当的条件,点击确定即可。我个人常用Rv.Normal或Rv.Uniform函数。
c.获得随机数字之后,你可以采用任意规则去进行随机抽样和分组,当然这个规则是你在生成随机数字之前就定好的,如你打算选取排序前50%的个案入A组等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01