京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据来了,传统市场研究将消亡
现在,几乎所有人都在说,大数据是成功营销的解决方案。通过查看平台的细分数据和消费者信息,我们可以全面了解消费者偏好及购买习惯。而市场研究人所做的只是汇总不同来源的资料,而这,大数据完全可以做到。不知道从何时起,仿佛有一种声音在说:传统的市场研究已死!因为他从来不能告知我们消费者真正在做什么,只是知道消费者声称在做些什么。

可是事实真是如此吗?许多公司正在发现,大数据虽然很有用,但它也有局限。大数据可以告诉我们消费者曾经做了些什么,并借此预测将来他们可能会做什么。但它不可能揭示消费者的想法和他们为什么这样做。因此,它既不能揭示消费者是否会采用新的技术和产品,也不能预测未来的发展趋势。大数据没有能力去揭示未满足的消费者需求或满足度极低的消费者需求。
传统的市场研究则可以未知的消费趋势。传统市场研究能够使我们接触到大数据无法覆盖的消费人群(例如潜在的消费者或选择了退出数据收集的顾客)。此外,由于传统市场研究必须要由假设驱动,它避免了大数据的噪音和杂乱,让公司更集中于他们想要了解的消费者身上。大数据应该用来在假设驱动下进行趋势预测,而不是被局限于可收集到的数据范围内使用。
市场研究未死,只需创新融合:大数据+传统市场研究
新一代的市场研究是综合二者的优势,以获得对消费者的洞察。结合从大数据获得的详细消费者真实行为,并通过市场研究探索消费者内心深处的需求和动机,提供360度的全方位观察,这必定是市场研究未来发展的方向。
在许多行业,我们已经能看到这种结合带来的惊喜。
1)大数据+市场研究:告诉你与对手的差别在哪
大数据的优势在于提供真实的——非声称的——行为量化数据,然而在许多情形下,大数据只能告知企业他们自己用户的情况,而不能提供自己与竞争对手行为的差异,更不能显示那些没有参与市场活动的消费者的行为。市场研究可以对这二个方面提供洞察,以补充大数据的不足。
以金融机构作为例子,营运商对他们的用户有着充足行为洞察分析。其中有一家营运商根据自己用户使用习惯进行市场细分。他们最初的考虑是营销活动针对中度用户。用户数据却显示,这些中度用户与重度用户相比只有很小的上升空间。但是通过传统的市场研究却发现,该营运商的重度消费群也是其竞争对手的重度消费群,该市场研究的洞察引导他们对自身策略的根本性调整,包括针对重度的消费群策略的调整。
药品企业也有机会把市场研究的洞察与大数据相结合。在许多国家,市场研究可以采用匿名对匿名的方式连接医生处方数据库。通过了解医生处方行为的广泛数据,药品企业可以利用大数据定义和量化分析患者支付意愿的上升空间。市场研究通过提供驱动不同处方行为的动机分析,来发现如何提升这些患者的支付意愿。
2)大数据+市场研究:告诉你为什么用户这么做
融合研究的另一优势是它有充分洞察理解数据的能力。复杂的消费行为模式通常导致我们只注意到令人好奇的表象和有悖常理的消费模式。例如,一个零售商注意到,它的信用卡销售数据库显示,其中一个消费群体购买了大量的服饰配件但只买了很少的服装。为了找到其中的原因,该零售商调查了他的产品用户。很快就获得结果,是该顾客觉得服装太贵。有趣的是这些顾客却并不知道该零售商推出了新的“物有所值”系列。这家公司便主动把新的服装系列介绍给这些大量购买服饰配件的顾客,结果使这家门店的销售量大增。
一个网上服务供应商给出了另外一个市场研究可如何诠释大数据的例子。这家供应商注意到,他的顾客正在以某种无法解释的形式购买某一产品。最后,他们采用了探索性的定性研究来分析了其中的原因,解决了阻碍产品畅销的障碍。
3)大数据+市场研究:告诉你未来应该怎么做
价格弹性数据可以轻松预测出来,并且为实际销售数据的历史分析提供依据。大部分的零售商都拥有丰富的销售行为数据、促销数据、有时候还有对门店忠诚度的数据。所有这些都能结合生成强大的预测工具。但如果最佳价格的策略以前从来没有运用过,最佳价格水平偏离所提供的定价,或即将上市新产品的最佳定价,我们该如何做?
在这种情况下,市场研究就能发挥它的作用。传统的概念测试(或具有更实在的产品配置等,采用Conjoint/联合分析)可以探索到将来的定价情形。然而更强有力的情形是,让一些历史定价水平融合Conjoint/联合分析的设计。这使得Conjoint联合分析和历史时序分析两者校准。融合这两种方法可产生更易理解的更稳健的价格策略。
以上案例表明传统市场研究与大数据的互为补充。考虑到市场上产品和服务的组合复杂性,难以覆盖一个广泛的价格范围。例如,在电信方面,有许多不同的价格层级和产品组合。电信公司必须了解每个产品/服务/价格组合还有捆绑组合的细节。标准的Conjoint联合分析技术无法处理这些复杂情形。回顾过去的销售数据和ARPU(每个用户的平均收益),这些数据使得Conjoint联合分析的设计能制定和指引受访者到与他们的情况最相关的交易中。与真正的ARPU数据相对接,对估计每个组合产品(还有全部的投资组合)的市场潜力变得更接近真实。
大数据和市场研究经常是孤立于对方,以不同的功能各自独行,只有两者有效融合,才能发挥更大的作用,创造极大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08