
大数据来了,传统市场研究将消亡
现在,几乎所有人都在说,大数据是成功营销的解决方案。通过查看平台的细分数据和消费者信息,我们可以全面了解消费者偏好及购买习惯。而市场研究人所做的只是汇总不同来源的资料,而这,大数据完全可以做到。不知道从何时起,仿佛有一种声音在说:传统的市场研究已死!因为他从来不能告知我们消费者真正在做什么,只是知道消费者声称在做些什么。
可是事实真是如此吗?许多公司正在发现,大数据虽然很有用,但它也有局限。大数据可以告诉我们消费者曾经做了些什么,并借此预测将来他们可能会做什么。但它不可能揭示消费者的想法和他们为什么这样做。因此,它既不能揭示消费者是否会采用新的技术和产品,也不能预测未来的发展趋势。大数据没有能力去揭示未满足的消费者需求或满足度极低的消费者需求。
传统的市场研究则可以未知的消费趋势。传统市场研究能够使我们接触到大数据无法覆盖的消费人群(例如潜在的消费者或选择了退出数据收集的顾客)。此外,由于传统市场研究必须要由假设驱动,它避免了大数据的噪音和杂乱,让公司更集中于他们想要了解的消费者身上。大数据应该用来在假设驱动下进行趋势预测,而不是被局限于可收集到的数据范围内使用。
市场研究未死,只需创新融合:大数据+传统市场研究
新一代的市场研究是综合二者的优势,以获得对消费者的洞察。结合从大数据获得的详细消费者真实行为,并通过市场研究探索消费者内心深处的需求和动机,提供360度的全方位观察,这必定是市场研究未来发展的方向。
在许多行业,我们已经能看到这种结合带来的惊喜。
1)大数据+市场研究:告诉你与对手的差别在哪
大数据的优势在于提供真实的——非声称的——行为量化数据,然而在许多情形下,大数据只能告知企业他们自己用户的情况,而不能提供自己与竞争对手行为的差异,更不能显示那些没有参与市场活动的消费者的行为。市场研究可以对这二个方面提供洞察,以补充大数据的不足。
以金融机构作为例子,营运商对他们的用户有着充足行为洞察分析。其中有一家营运商根据自己用户使用习惯进行市场细分。他们最初的考虑是营销活动针对中度用户。用户数据却显示,这些中度用户与重度用户相比只有很小的上升空间。但是通过传统的市场研究却发现,该营运商的重度消费群也是其竞争对手的重度消费群,该市场研究的洞察引导他们对自身策略的根本性调整,包括针对重度的消费群策略的调整。
药品企业也有机会把市场研究的洞察与大数据相结合。在许多国家,市场研究可以采用匿名对匿名的方式连接医生处方数据库。通过了解医生处方行为的广泛数据,药品企业可以利用大数据定义和量化分析患者支付意愿的上升空间。市场研究通过提供驱动不同处方行为的动机分析,来发现如何提升这些患者的支付意愿。
2)大数据+市场研究:告诉你为什么用户这么做
融合研究的另一优势是它有充分洞察理解数据的能力。复杂的消费行为模式通常导致我们只注意到令人好奇的表象和有悖常理的消费模式。例如,一个零售商注意到,它的信用卡销售数据库显示,其中一个消费群体购买了大量的服饰配件但只买了很少的服装。为了找到其中的原因,该零售商调查了他的产品用户。很快就获得结果,是该顾客觉得服装太贵。有趣的是这些顾客却并不知道该零售商推出了新的“物有所值”系列。这家公司便主动把新的服装系列介绍给这些大量购买服饰配件的顾客,结果使这家门店的销售量大增。
一个网上服务供应商给出了另外一个市场研究可如何诠释大数据的例子。这家供应商注意到,他的顾客正在以某种无法解释的形式购买某一产品。最后,他们采用了探索性的定性研究来分析了其中的原因,解决了阻碍产品畅销的障碍。
3)大数据+市场研究:告诉你未来应该怎么做
价格弹性数据可以轻松预测出来,并且为实际销售数据的历史分析提供依据。大部分的零售商都拥有丰富的销售行为数据、促销数据、有时候还有对门店忠诚度的数据。所有这些都能结合生成强大的预测工具。但如果最佳价格的策略以前从来没有运用过,最佳价格水平偏离所提供的定价,或即将上市新产品的最佳定价,我们该如何做?
在这种情况下,市场研究就能发挥它的作用。传统的概念测试(或具有更实在的产品配置等,采用Conjoint/联合分析)可以探索到将来的定价情形。然而更强有力的情形是,让一些历史定价水平融合Conjoint/联合分析的设计。这使得Conjoint联合分析和历史时序分析两者校准。融合这两种方法可产生更易理解的更稳健的价格策略。
以上案例表明传统市场研究与大数据的互为补充。考虑到市场上产品和服务的组合复杂性,难以覆盖一个广泛的价格范围。例如,在电信方面,有许多不同的价格层级和产品组合。电信公司必须了解每个产品/服务/价格组合还有捆绑组合的细节。标准的Conjoint联合分析技术无法处理这些复杂情形。回顾过去的销售数据和ARPU(每个用户的平均收益),这些数据使得Conjoint联合分析的设计能制定和指引受访者到与他们的情况最相关的交易中。与真正的ARPU数据相对接,对估计每个组合产品(还有全部的投资组合)的市场潜力变得更接近真实。
大数据和市场研究经常是孤立于对方,以不同的功能各自独行,只有两者有效融合,才能发挥更大的作用,创造极大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08