京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由新浪财经主办的“2014新浪金麒麟论坛”于2014年11月22日在北京举行。本届论坛主题:变革与决策。同方股份有限公司副总裁周侠在圆桌论坛城镇化2.0的新命题:智慧与城市中表示,信息是实体化的数据,而数据是抽象的信息,数据是产生智慧的基础。有了数据产生智慧,一个城市也一样,城市产生智慧也是数据作为基础的。
以下为发言实录:
周侠:刚才几位老大把我想要说的话都说了。从广义和高度来讲,大家的阐述都没有太大区别。我从狭义的角度讲一讲。智慧城市建设是6个字,刚才韩总解读了智慧城市的4个字,我其实理解智慧城市建设是6个字,城市建设、智慧建设和智慧城市建设,其实都有很多区别。我们提出大数据成就智慧,其实找这个区别,去解读区别,去反映客观事实的方式是有关系的。智慧城市其实一直在建设当中,之前的智慧城市和现在的智慧城市不同,李主任说智慧城市不要变成一个形象工程。其实做智慧城市,不管是企业还是政府,应该真正理解“智慧”,把智慧理解清楚之后,我们所有的顶层设计,我们的规划,我们的实施,我们的体验,才有一个主题,不然我们的主题会很混。
城市建设和智慧建设和智慧城市建设有什么区别?假如把城市作为一个人,一个人的智慧,产生智慧的唯一器官只有大脑,没有第二器官,所有其他器官都是产生信息的源,物联网叫什么传感器。而一个人产生智慧的大脑,唯一器官,而大脑干什么呢?搜集信息、分析信息、处理信息和阐述信息。信息是什么呢?信息是实体化的数据,而数据是抽象的信息,数据是产生智慧的基础。有了数据产生智慧,一个城市也一样,城市产生智慧也是数据作为基础的。假如我们把这个逻辑能够考虑好、想清楚,我们就反过来想想我们怎么产生智慧,智慧城市首先是要智慧建设。我们今天看到很多智慧城市的项目,多大多大,多少亿,其中真正智慧的部分从总量来讲并不大。智慧城市建设是在原有的城市建设的升级、提高、突破、变革。
做智慧城市的建设我们有一个宗旨是强镇、兴业、惠民,政府的职能转型我们要智慧帮忙,政府的决策要科学。兴业是对传统产业跨越式发展,对新产业拉动,和对一些产业的转型。老百姓是最根本的,以人为本的体验。我跟海曙区的一个水表厂的一个智慧合作,我们拿一个很小的例子来演绎推理真正的智慧是什么。这个水表厂是民营企业,原来是做传统水表的,5、6年前转型做智能水表,刷卡,买多少吨水插到里头才开始用,已经上升到一个高度。到今天我们在合作做什么?做智慧水表。什么是智慧水表?原有的水表不说了,抄字。智能水表是买多少吨放里头就OK了。但是每家每户用水表的习惯是不清楚的,所谓智慧水表,我们在原有的智能水表做了很大的智慧改造,在后台建立了智慧平台,通过远程操作,通过无线传输技术、软件技术、传感技术和相关所有的技术进行高度的融合,产生智慧的体验,政府对水资源管理,因为每家每户对水使用的习惯有了一个数据平台做支撑,对政府对水资源管理、对水厂生产水和水资源管理有了很高的数据基础之后,对它的决策,对水厂生产水的指标,生产水的计划和浪费,做了很大的管理。
第二,对产业拉动。本身这是一个传统企业,它要在转型当中如何转型?通过智慧转型来拉动这个市场,使它的工厂更好发展,对地方产业有拉动。第三,对每家每户的老百姓,由过去要抄水,到银行买水,到今天定时定点给你发短信,你自己可以到银行,甚至银行有关联卡,自动在手机上就把水费交掉了。同时你的用水习惯,因为现在有阶梯收费,我们都在关心我们的水用到什么地方该进入阶梯呢?其实这个数据平台为老百姓用水的体验做了很大的帮忙。除此之外,这个数据其实会演绎到比如说对房地产交易,对房地产的空置率有影响,对物业,对老百姓比如空巢老人,家里边没有子女的,老人通过用水的变化,对物业,对保安,或者是对他的家属,对这个家里老人的安全等等等等,不一列举。其实这个智慧的过程,本身我认为就是一个真正产生智慧,从产业拉动到政府管理,到老百姓体验,形成了一个产业链。
这是一个很小的例子。
今天同方提出了,我们要在2015年之前,在全国去找100个智慧城市的单位合作,我们谈智慧城市并不是做智慧项目,智慧项目天天有,而同方所谓的“百城计划”,是要跟一百个城市做战略发展合作,而不是简单的一百个某某城市的智慧项目合作,这不是我们的初衷,也不是我们的目标。
今天我们在一个城市做智慧城市建设,首先是站在共同发展的角度去考虑问题。我们提出了泛集成的概念。什么叫泛集成?今天做智慧城市绝不是传统意义做一个项目,或者做一个传统意义上的集成公司,而更多是要通过对业主的智慧理解,每一个城市的智慧理解是不一样的,特色是不一样的,从智慧的可研、设计到规划,最终才到实施或者运维。第三,如何通过资金的综合解决方案,为城市的智慧城市建设提供方案。为什么?因为我们谈顶层设计,既然顶层设计了,这个产业不是说一年、一月做完,肯定是需要五年甚至更长的计划,你的规划是什么?假如做了十个亿的规划,你只有2000万怎么建?或者你今天只有2000万,怎么做顶层设计?我们通过顶层设计,通过资金的解决方案,建设的解决方案,包括跟我们合作的友商,跟地方的扶持公司,未来跟地方产业如何结合发展,多方位的合作,是泛集成。同时再加上信息安全,没有信息安全的智慧其实也不叫智慧。所以,信息安全我们叫保驾护航。
把三者真正贯穿起来,把真正的智慧理解透,不在于大与小,而真正在于如何为我们城市解决智慧的核心,解决智慧的问题,这是我们的考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01