
R学习笔记—wordcloud包制作词云图
一、.wordcloud包的函数介绍
1.wordcloud函数——用于制作常规的词云图
wordcloud(words,freq,scale=c(4,.5),min.freq=3,max.words=Inf,random.order=TRUE, random.color=FALSE, rot.per=.1,colors="black",ordered.colors=FALSE,use.r.layout=FALSE,...)
2.参数介绍:
(1)words——关键词列表
(2)freq——关键词对应的词频列表
(3)scale——字号列表。c(最大字号, 最小字号)
(4)min.freq——最小限制频数。低于此频数的关键词将不会被显示。
(5)max.words——限制词云图上关键词的数量。最后出现在词云图上的关键词数量不超过此限制。
(6)random.order——控制关键词在图上的排列顺序。T:关键词随机排列;F:关键词按频数从图中心位置往外降序排列,即频数大的词出现在中心位置。
(7)random.color——控制关键词的字体颜色。T:字体颜色随机分配;F:根据频数分配字体颜色。
(8)rot.per——控制关键词摆放角度。T:水平摆放;F:旋转90度。
(9)colors——字体颜色列表
(10)ordered.colors——控制字体颜色使用顺序。T:按照指定的顺序给出每个关键词字体颜色,(似乎是要求颜色列表中每个颜色一一对应关键词列表);F:任意给出字体颜色。
(11)use.r.layout=T;F
二、具体使用案例
1.安装程序包
install.packages('wordcloud')
2.加载程序包
library(wordcloud)
3.给出字体颜色
自己指定字体颜色
colors=c('red','blue','green','yellow','purple')
或者使用R颜色程序包中现成的主题模板
colors=brewer.pal(9,"Set1")
4.读取原数据
原始数据放在 了test.csv文件里,分2列:关键词、频数。且第一行为列标题:words、freq
data=read.csv("c:/test.csv")
5.执行函数
wordcloud(data$words,data$freq,scale=c(3,0.3),min.freq=-Inf,max.words=Inf,colors=colors,random.order=F,random.color=F,ordered.colors=F)
6.保存图片
截图保存或保存为位图。
附一张示例图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29