
大数据如何改变金融?
当今社会,庞大的数据及高端复杂的科学技术正在持续改变着产业的经营方式和竞争方式。每一天,世界上都有两百五十万的三次方的字节数据产生出来,这直接导致了仅在过去两年时间内就创建出世界上90%的数据。这种通常所谓的“大数据”的快速增长和存储,也创造出了很多机会:比如收集数据,处理数据,结构化和非结构化的数据分析等等。
在遵循大数据的3 V法则的基础上(后文会有详细介绍),各类组织通过对已知数据加以分析,帮助自己的公司作出更好的商业决策。这些已经采用大数据技术的行业包括:金融服务,科技,市场营销和健康护理/保健等。大数据的采用不断改变着行业的竞争格局。有89 %的企业相坚信如果没有决策分析将会让自己在市场竞争上存在很大风险。
特别是金融服务,现如今已是广泛采用大数据分析来获得更好的、有稳定回报的投资决策。交易算法使用复杂的数学模型和大量的历史数据,最大限度地提高投资回报。持续采用大数据技术将不可避免地改变金融服务的格局。然而,虽然大数据的应用给我们带来了明显的好处,但与此同时如何让大数据处理更多、更大量的数据也成为了挑战。
大数据的3V法则
3 V法则是大数据的基础,他们是:量级(volume),种类(variety)和速度(velocity)。面对日益激烈的竞争,监管约束和客户需求,金融机构正在寻求新的方法/技术来提高效率。根据不同的行业,企业和公司可以利用大数据的某些特定方面获得竞争优势。
速度是指数据被存储和分析的速度。纽约证交所每天需要捕捉1兆兆字节的信息。到2016年,将有大约18.9十亿的网络连接,这意味着地球上每个人都贡献了约2.5次连接。金融机构可以通过“专注高效,快速处理交易”而在行业竞争中脱颖而出。
大数据可以被分类为非结构化数据或结构化数据。非结构化数据是指未被组织好并且无法被应用于已定义好的模型的数据。这包括来自社交媒体的消息,这类信息一般有助于机构收集客户需求。结构化数据是指已在关系数据库和电子表格中组织管理好的信息。总的来说,为了更好的作出商业决策,各种形式的数据都必须可以被持续有效的管理。
市场数据量的不断增加对金融机构构成了一大挑战。庞大的历史数据,使得银行及资本市场需要积极持续的管理数据。同样,投资银行和资产管理公司需要使用大量的数据做出正确的投资决策。保险和退休基金也需要通过获取大量数据来进行风险管理和索赔信息。 (有关详细信息,请参见:Quants:The Rocket Scientists Of Wall Street)
算法交易(Algorithmic Trading)
随着计算机性能的日益强大,算法交易已成为大数据的代名词。自动化处理能使电脑程序以交易人员无法达到的速度和频率完成金融交易。通过数学模型,算法交易使金融交易能以最优的价格及时的执行交易订单,同时,也减少了由于行为因素导致的人为错误。
金融机构可以更有效地精简算法以结合大量数据,利用大量的历史数据回测策略,从而生成风险较低的投资。这有助于用户找出要保留的有用数据,抛弃低值数据。鉴于算法可以用结构化和非结构化数据,结合实时新闻,社交媒体和股票数据于一体的算法引擎可以创建更好的交易决策。不像人们做决策时会受到不同信息源,情感和偏见的影响,算法的交易将只根据金融模型和数据输出执行结果。
机器人顾问在一个数字化平台上使用投资算法和海量数据。机器人顾问以现代投资组合理论为理论框架进行投资,它们通常赞同进行长期投资,以维持收益的一致性,它们也需要与人类的财务顾问进行小小的互动。(更多信息,请参阅: Basics of Algorithmic Trading: Concepts and Examples. )
挑战
尽管金融服务行业正在不懈地拥抱大数据,但是在该领域中仍然存在着重大挑战。最重要的挑战就是各种非结构化数据的收集所招致的隐私问题。个人信息可以通过社交媒体、电子邮件和健康记录搜集到个人的决策信息。
具体到金融服务而言,大多数的争辩关注在数据分析上。为了获得准确的结果,对全量数据的分析需要更复杂的统计技术。特别是,评论家以伪相关性的模式高估了信噪比,这表示可靠的统计学结果纯属偶然。同样,由于历史数据的趋势,以经济理论为基础的算法通常也会指向长期投资机会。支持短期投资策略的有效生成结果是预测模型中固有的挑战。
总结
大数据将继续改变各行各业的格局,尤其是金融服务业。许多金融机构都在采用大数据分析,以保持竞争优势。通过结构化和非结构化数据,复杂的算法可以使用多个数据源执行交易。人类的情感和偏见可以通过自动化实现最小化;然而,应用大数据分析的交易也有其特定的挑战,到目前为止,因为该领域相对较为新颖,产生的统计结果还没有完全被接受。然而,随着金融服务对大数据和自动化应用的趋势,复杂的统计分析技术的准确性将会进一步提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09