
大数据如何改变金融?
当今社会,庞大的数据及高端复杂的科学技术正在持续改变着产业的经营方式和竞争方式。每一天,世界上都有两百五十万的三次方的字节数据产生出来,这直接导致了仅在过去两年时间内就创建出世界上90%的数据。这种通常所谓的“大数据”的快速增长和存储,也创造出了很多机会:比如收集数据,处理数据,结构化和非结构化的数据分析等等。
在遵循大数据的3 V法则的基础上(后文会有详细介绍),各类组织通过对已知数据加以分析,帮助自己的公司作出更好的商业决策。这些已经采用大数据技术的行业包括:金融服务,科技,市场营销和健康护理/保健等。大数据的采用不断改变着行业的竞争格局。有89 %的企业相坚信如果没有决策分析将会让自己在市场竞争上存在很大风险。
特别是金融服务,现如今已是广泛采用大数据分析来获得更好的、有稳定回报的投资决策。交易算法使用复杂的数学模型和大量的历史数据,最大限度地提高投资回报。持续采用大数据技术将不可避免地改变金融服务的格局。然而,虽然大数据的应用给我们带来了明显的好处,但与此同时如何让大数据处理更多、更大量的数据也成为了挑战。
大数据的3V法则
3 V法则是大数据的基础,他们是:量级(volume),种类(variety)和速度(velocity)。面对日益激烈的竞争,监管约束和客户需求,金融机构正在寻求新的方法/技术来提高效率。根据不同的行业,企业和公司可以利用大数据的某些特定方面获得竞争优势。
速度是指数据被存储和分析的速度。纽约证交所每天需要捕捉1兆兆字节的信息。到2016年,将有大约18.9十亿的网络连接,这意味着地球上每个人都贡献了约2.5次连接。金融机构可以通过“专注高效,快速处理交易”而在行业竞争中脱颖而出。
大数据可以被分类为非结构化数据或结构化数据。非结构化数据是指未被组织好并且无法被应用于已定义好的模型的数据。这包括来自社交媒体的消息,这类信息一般有助于机构收集客户需求。结构化数据是指已在关系数据库和电子表格中组织管理好的信息。总的来说,为了更好的作出商业决策,各种形式的数据都必须可以被持续有效的管理。
市场数据量的不断增加对金融机构构成了一大挑战。庞大的历史数据,使得银行及资本市场需要积极持续的管理数据。同样,投资银行和资产管理公司需要使用大量的数据做出正确的投资决策。保险和退休基金也需要通过获取大量数据来进行风险管理和索赔信息。 (有关详细信息,请参见:Quants:The Rocket Scientists Of Wall Street)
算法交易(Algorithmic Trading)
随着计算机性能的日益强大,算法交易已成为大数据的代名词。自动化处理能使电脑程序以交易人员无法达到的速度和频率完成金融交易。通过数学模型,算法交易使金融交易能以最优的价格及时的执行交易订单,同时,也减少了由于行为因素导致的人为错误。
金融机构可以更有效地精简算法以结合大量数据,利用大量的历史数据回测策略,从而生成风险较低的投资。这有助于用户找出要保留的有用数据,抛弃低值数据。鉴于算法可以用结构化和非结构化数据,结合实时新闻,社交媒体和股票数据于一体的算法引擎可以创建更好的交易决策。不像人们做决策时会受到不同信息源,情感和偏见的影响,算法的交易将只根据金融模型和数据输出执行结果。
机器人顾问在一个数字化平台上使用投资算法和海量数据。机器人顾问以现代投资组合理论为理论框架进行投资,它们通常赞同进行长期投资,以维持收益的一致性,它们也需要与人类的财务顾问进行小小的互动。(更多信息,请参阅: Basics of Algorithmic Trading: Concepts and Examples. )
挑战
尽管金融服务行业正在不懈地拥抱大数据,但是在该领域中仍然存在着重大挑战。最重要的挑战就是各种非结构化数据的收集所招致的隐私问题。个人信息可以通过社交媒体、电子邮件和健康记录搜集到个人的决策信息。
具体到金融服务而言,大多数的争辩关注在数据分析上。为了获得准确的结果,对全量数据的分析需要更复杂的统计技术。特别是,评论家以伪相关性的模式高估了信噪比,这表示可靠的统计学结果纯属偶然。同样,由于历史数据的趋势,以经济理论为基础的算法通常也会指向长期投资机会。支持短期投资策略的有效生成结果是预测模型中固有的挑战。
总结
大数据将继续改变各行各业的格局,尤其是金融服务业。许多金融机构都在采用大数据分析,以保持竞争优势。通过结构化和非结构化数据,复杂的算法可以使用多个数据源执行交易。人类的情感和偏见可以通过自动化实现最小化;然而,应用大数据分析的交易也有其特定的挑战,到目前为止,因为该领域相对较为新颖,产生的统计结果还没有完全被接受。然而,随着金融服务对大数据和自动化应用的趋势,复杂的统计分析技术的准确性将会进一步提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25