京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何改变金融?
当今社会,庞大的数据及高端复杂的科学技术正在持续改变着产业的经营方式和竞争方式。每一天,世界上都有两百五十万的三次方的字节数据产生出来,这直接导致了仅在过去两年时间内就创建出世界上90%的数据。这种通常所谓的“大数据”的快速增长和存储,也创造出了很多机会:比如收集数据,处理数据,结构化和非结构化的数据分析等等。
在遵循大数据的3 V法则的基础上(后文会有详细介绍),各类组织通过对已知数据加以分析,帮助自己的公司作出更好的商业决策。这些已经采用大数据技术的行业包括:金融服务,科技,市场营销和健康护理/保健等。大数据的采用不断改变着行业的竞争格局。有89 %的企业相坚信如果没有决策分析将会让自己在市场竞争上存在很大风险。

特别是金融服务,现如今已是广泛采用大数据分析来获得更好的、有稳定回报的投资决策。交易算法使用复杂的数学模型和大量的历史数据,最大限度地提高投资回报。持续采用大数据技术将不可避免地改变金融服务的格局。然而,虽然大数据的应用给我们带来了明显的好处,但与此同时如何让大数据处理更多、更大量的数据也成为了挑战。
大数据的3V法则
3 V法则是大数据的基础,他们是:量级(volume),种类(variety)和速度(velocity)。面对日益激烈的竞争,监管约束和客户需求,金融机构正在寻求新的方法/技术来提高效率。根据不同的行业,企业和公司可以利用大数据的某些特定方面获得竞争优势。
速度是指数据被存储和分析的速度。纽约证交所每天需要捕捉1兆兆字节的信息。到2016年,将有大约18.9十亿的网络连接,这意味着地球上每个人都贡献了约2.5次连接。金融机构可以通过“专注高效,快速处理交易”而在行业竞争中脱颖而出。
大数据可以被分类为非结构化数据或结构化数据。非结构化数据是指未被组织好并且无法被应用于已定义好的模型的数据。这包括来自社交媒体的消息,这类信息一般有助于机构收集客户需求。结构化数据是指已在关系数据库和电子表格中组织管理好的信息。总的来说,为了更好的作出商业决策,各种形式的数据都必须可以被持续有效的管理。
市场数据量的不断增加对金融机构构成了一大挑战。庞大的历史数据,使得银行及资本市场需要积极持续的管理数据。同样,投资银行和资产管理公司需要使用大量的数据做出正确的投资决策。保险和退休基金也需要通过获取大量数据来进行风险管理和索赔信息。 (有关详细信息,请参见:Quants:The Rocket Scientists Of Wall Street)
算法交易(Algorithmic Trading)
随着计算机性能的日益强大,算法交易已成为大数据的代名词。自动化处理能使电脑程序以交易人员无法达到的速度和频率完成金融交易。通过数学模型,算法交易使金融交易能以最优的价格及时的执行交易订单,同时,也减少了由于行为因素导致的人为错误。
金融机构可以更有效地精简算法以结合大量数据,利用大量的历史数据回测策略,从而生成风险较低的投资。这有助于用户找出要保留的有用数据,抛弃低值数据。鉴于算法可以用结构化和非结构化数据,结合实时新闻,社交媒体和股票数据于一体的算法引擎可以创建更好的交易决策。不像人们做决策时会受到不同信息源,情感和偏见的影响,算法的交易将只根据金融模型和数据输出执行结果。
机器人顾问在一个数字化平台上使用投资算法和海量数据。机器人顾问以现代投资组合理论为理论框架进行投资,它们通常赞同进行长期投资,以维持收益的一致性,它们也需要与人类的财务顾问进行小小的互动。(更多信息,请参阅: Basics of Algorithmic Trading: Concepts and Examples. )
挑战
尽管金融服务行业正在不懈地拥抱大数据,但是在该领域中仍然存在着重大挑战。最重要的挑战就是各种非结构化数据的收集所招致的隐私问题。个人信息可以通过社交媒体、电子邮件和健康记录搜集到个人的决策信息。
具体到金融服务而言,大多数的争辩关注在数据分析上。为了获得准确的结果,对全量数据的分析需要更复杂的统计技术。特别是,评论家以伪相关性的模式高估了信噪比,这表示可靠的统计学结果纯属偶然。同样,由于历史数据的趋势,以经济理论为基础的算法通常也会指向长期投资机会。支持短期投资策略的有效生成结果是预测模型中固有的挑战。
总结
大数据将继续改变各行各业的格局,尤其是金融服务业。许多金融机构都在采用大数据分析,以保持竞争优势。通过结构化和非结构化数据,复杂的算法可以使用多个数据源执行交易。人类的情感和偏见可以通过自动化实现最小化;然而,应用大数据分析的交易也有其特定的挑战,到目前为止,因为该领域相对较为新颖,产生的统计结果还没有完全被接受。然而,随着金融服务对大数据和自动化应用的趋势,复杂的统计分析技术的准确性将会进一步提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26