京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘中,被常拿来说的啤酒尿布的例子就是一个很典型的运用关联算法来做购物来分析的例子。常被用于交易数据、关系数据的分析,发现数据集中隐藏的频繁模式,这些频繁模式可以用关联规则的形式表示,有效的关联规则对商家的商品进出货摆放都有很大的指导意义。
设 是项的集合,数据集D是事务的集合,每项事务T是一个非空项集,且T是I的非空子集。每项事务都有一个唯一标识符,定义为TID,A和B均为事务T中的非空子集,并且A和B无交集。则规则
成立,支持度s是D中同时包含A和B的事务所占的百分比,置信度c是包含A的事务中包含B的事务的百分比。如下:
频繁模式中同时满足最小支持度阈值和最小置信度阈值的为强关联规则。
1. 找出所有频繁项集。每个项集出现频次大于最小支持计数。
2. 由频繁项集得到强关联规则。这些规则同时满足最小支持度阈值和最小置信度阈值。
Apriori先验算法,基于先验性质:频繁项集的所有非空子集也一定是频繁的。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 扫描找出候选项集(初始扫描D得到候选项集
)
2. 计算支持度计数,与最小支持度计数比较得到频繁项集
3. 自连接产生候选项集
4. 重复2-3的过程,直到得到最大频繁项集 。
由频繁项集得到强关联规则的过程
1. 对中每一项L,取其所有非空子集
2. 若对于L的某一非空子集S,若置信度大于最小支持度阈值
3. 则产生强规则:
以下截图为《数据挖掘:概念与技术》中第六章Apriori获取频繁集过程示例。
Apriori算法的缺陷:可能产生大量候选集,可能需要重复扫描整个数据库匹配检查一个很大的候选集合。空间时间的花费会很大。
频繁模式树增长算法,产生FP数,由树递归推演得到频繁模式。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 第一次扫描D,并对比最小支持度计数,取1项频繁集L
2. 1项频繁集L按支持度计数降序排列
3. 创建数的根节点,用null标记
4. 第二次扫描D,D中每一项事务中的想都按L中的次序处理,为每个事务创建一个分支
5. 结点不存在时,新建结点,结点计数赋值为1;结点已存在时,结点计数加1
6. 从频繁集L的最后一项开始,对其每一项找到所有含该项的分支路径。
7. 路径中的结点计数即为该路径下所有节点所组成的项集,在该分支的计数
8. 合并每一分支的项集,获取频繁集
以下截图为《数据挖掘:概念与技术》中第六章FP-Growth获取频繁集过程示例。
Eclat
等价类变换
垂直数据格式{item:TID_set}
发现频繁集的过程
1. 对每频繁项的TID集取交集
2. 重复上述过程直至没有更大频繁集
以下截图为《数据挖掘:概念与技术》中第六章Eclat获取频繁集过程示例。
判断规则的有效性
提升度:
Lift=1,A和B独立不相关,lift<1,A和B负相关,lift>1,A和B正相关。
相关性分析:
全置信度:
最大置信度:
Kulczynski(Kulc):
余弦:
后面四项度量值取值范围都是0~1,并且值越大A和B的联系越紧密。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06