京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘中,被常拿来说的啤酒尿布的例子就是一个很典型的运用关联算法来做购物来分析的例子。常被用于交易数据、关系数据的分析,发现数据集中隐藏的频繁模式,这些频繁模式可以用关联规则的形式表示,有效的关联规则对商家的商品进出货摆放都有很大的指导意义。
设 是项的集合,数据集D是事务的集合,每项事务T是一个非空项集,且T是I的非空子集。每项事务都有一个唯一标识符,定义为TID,A和B均为事务T中的非空子集,并且A和B无交集。则规则
成立,支持度s是D中同时包含A和B的事务所占的百分比,置信度c是包含A的事务中包含B的事务的百分比。如下:
频繁模式中同时满足最小支持度阈值和最小置信度阈值的为强关联规则。
1. 找出所有频繁项集。每个项集出现频次大于最小支持计数。
2. 由频繁项集得到强关联规则。这些规则同时满足最小支持度阈值和最小置信度阈值。
Apriori先验算法,基于先验性质:频繁项集的所有非空子集也一定是频繁的。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 扫描找出候选项集(初始扫描D得到候选项集
)
2. 计算支持度计数,与最小支持度计数比较得到频繁项集
3. 自连接产生候选项集
4. 重复2-3的过程,直到得到最大频繁项集 。
由频繁项集得到强关联规则的过程
1. 对中每一项L,取其所有非空子集
2. 若对于L的某一非空子集S,若置信度大于最小支持度阈值
3. 则产生强规则:
以下截图为《数据挖掘:概念与技术》中第六章Apriori获取频繁集过程示例。
Apriori算法的缺陷:可能产生大量候选集,可能需要重复扫描整个数据库匹配检查一个很大的候选集合。空间时间的花费会很大。
频繁模式树增长算法,产生FP数,由树递归推演得到频繁模式。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 第一次扫描D,并对比最小支持度计数,取1项频繁集L
2. 1项频繁集L按支持度计数降序排列
3. 创建数的根节点,用null标记
4. 第二次扫描D,D中每一项事务中的想都按L中的次序处理,为每个事务创建一个分支
5. 结点不存在时,新建结点,结点计数赋值为1;结点已存在时,结点计数加1
6. 从频繁集L的最后一项开始,对其每一项找到所有含该项的分支路径。
7. 路径中的结点计数即为该路径下所有节点所组成的项集,在该分支的计数
8. 合并每一分支的项集,获取频繁集
以下截图为《数据挖掘:概念与技术》中第六章FP-Growth获取频繁集过程示例。
Eclat
等价类变换
垂直数据格式{item:TID_set}
发现频繁集的过程
1. 对每频繁项的TID集取交集
2. 重复上述过程直至没有更大频繁集
以下截图为《数据挖掘:概念与技术》中第六章Eclat获取频繁集过程示例。
判断规则的有效性
提升度:
Lift=1,A和B独立不相关,lift<1,A和B负相关,lift>1,A和B正相关。
相关性分析:
全置信度:
最大置信度:
Kulczynski(Kulc):
余弦:
后面四项度量值取值范围都是0~1,并且值越大A和B的联系越紧密。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21