
大数据代表未来,投资力度增强
大数据以“降低信息不对称和提高决策有效性”为目标,可广泛作用于几乎所有行业,必将掀起一场新的革命。目前,大数据已经迎来了高速发展的黄金成长期,我们看好其发展趋势,推荐投资者提高对其中孕育机会的关注度。
从源到流看,大数据涵盖数据入口、数据融合处理、数据应用三个过程;按照物理分层,大数据又可以分为硬件、基础软件、应用软件和信息服务四个维度。每一个细分领域都正在不断演进,存在不少问题也孕育着巨大的机会,万千创业者不断地寻找着新的突破口。
目前制约大数据更好更快发展的主要问题有以下几点:
一是数据的归属权不清晰,各家数据资产型企业私密占有平台数据,制约着大数据的融合及发展;
二是数据有效性将直接影响到大数据的应用水平,从源数据到分析样本的采集过程需要大量人工干预;
三是配套软硬件成熟度不够:适宜处理海量数据的数据库软件尚未成熟,私有云的普及程度也不高;
四是数据尚未获得真正意义上的定价和产业化。
基于对大数据的研究,我们判断,未来3-5年的中期投资思路主要包括新数据入口、新模式、数据融合处理和商业智能4个方面。其中,新入口方向推荐关注新型人机交互模式的可穿戴设备、准入门槛低并找到了硬需求作为切入点的智能家居、基于食药品生产追溯的物联网等相关企业;新模式方向推荐关注针对新入口的底层统计公司、“以免费服务获授权数据”和“有偿返还数据给用户”三种可能的创新;数据融合处理方向推荐关注针对金融业务的征信创业及私有云相关企业;商业智能方向推荐关注对细分行业有深刻理解的大数据应用软件及SaaS云服务供商。综合标的数量、确定性、所需投入和价值等因素考虑,重点推荐针对细分行业的大数据应用软件和SaaS云服务提供商、私有云解决方案提供商,追踪关注新入口的发展,并发掘相应的底层统计公司(类似针对移动应用的友盟)。
大数据代表未来
1) 环境驱动
数据产生成本逐年下降,政府和企业对大数据的投资力量日益增强,新的数据源正不断产生并壮大,大数据蓬勃发展的外部环境因素已经成熟。
成本逐年下降
根据IDC的判断,数据产生成本是符合反摩尔定律的,即数据产生成本大概每两年下降一半;而这一趋势,最起码会持续到2015年。
大量新数据源
互联网世界完成从Web1.0到web2.0的过渡,移动互联网日趋成熟,物联网长足发展,高粘性、强(实时快速)互动性、去(弱)中心化、全民媒体等特征明显呈现,线上与线下深度融合,各种(人人、人机)交互的网状结构更加复杂与饱满,全新数据源层出不穷。
各种电商平台、O2O入口、电子支付平台等的发展,让我们可以捕捉到海量的商业交易活动行为痕迹;同时,SNS、自媒体、LBS 技术等的高速发展可以较好地呈现不同主体的关系链、偏好、兴趣、习惯等信息;前述两者共同让面向主体的识别与判定变得更加容易和精准;娱乐、媒体、医疗保健、视屏监控、物联网等则让我们进一步加深了对自己和环境的理解。
投资力度增强
从国家层面看,2012年3月9日,奥巴马政府投资2亿美元启动“大数据研究与发展计划”,希望增强手机海量数据、分析萃取信息的能力。预计欧盟、中国等主要经济实体也很可能跟进出台相应引导政策。在公司层面看,Google、微软、IBM、Oracle与BAT等国内外巨头均加强了在大数据相关领域的布局。根据麦肯锡预测,到2015年跟大数据相关的全球投资总额将增加到5.2万亿美元。
2) 需求驱动
我们认为整个人类都一直并将继续面对和突破四个约束——能源约束、信息约束、智慧约束和审美约束。其中,能源约束指人类生存、改善、发展所需的材料和泛能量之总和,能源是一定的,总量取决于人类的活动半径,利用水平则依赖于智慧和信息;信息约束指人类做决策所需要的非实物形态、非价值观和方法论的信息(具有一定一次性的特点)总和,信息正通过监测、取样、记录、保存而不断生成和更新迭代;智慧约束指人类生产或决策所需要的价值观、方法论等信息综合处理研判能力及知识,智慧通过人类不断的探索、试错行为产生新信息并再处理、再研判、再探索的行为而更新完善,并指导未来的决策;而审美约束0则指不同实体的亿万条效用曲线的共性和个性,在短期审美不易改变,很大程度作为人类思考和行为的指南针,长期则也会受智慧及信息影响而缓慢变迁。在这四个约束条件的共同作用下,人类通过不断探索、试错去寻求改善,从一个个旧的稳态发展到一个个新的稳态和帕累托均衡,以终为始,周而复始。
海量的,多种类的,以前没有或无法获取但正源源不断生成的大数据将直接而迅速地在较大程度突破信息约束,为突破智慧约束提供了广度和深度都前所未有的素材和原料;而“大数据”另一个特征——速度(信息快速处理能力)又能帮助我们在现在和不远的未来将这些素材和原料进行有效提取与再加工,形成知识演进和智慧积累,加快对智慧约束的突破;并指导我们更好的发现自己(审美约束,即亿万条效用曲线),理解和开发环境(能源约束),提高行为有效性。
因此,大数据直接而深度的影响信息约束和智慧约束,并间接的影响到能源约束和审美约束,我们认为他非常深度的契合了人类发展的需求,从需求层面讲必然代表未来的方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20